Metamath Proof Explorer


Theorem smfpimioo

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimioo.s φ S SAlg
smfpimioo.f φ F SMblFn S
smfpimioo.d D = dom F
smfpimioo.a φ A *
smfpimioo.b φ B *
Assertion smfpimioo φ F -1 A B S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpimioo.s φ S SAlg
2 smfpimioo.f φ F SMblFn S
3 smfpimioo.d D = dom F
4 smfpimioo.a φ A *
5 smfpimioo.b φ B *
6 1 2 3 smff φ F : D
7 6 feqmptd φ F = x D F x
8 7 cnveqd φ F -1 = x D F x -1
9 8 imaeq1d φ F -1 A B = x D F x -1 A B
10 eqid x D F x = x D F x
11 10 mptpreima x D F x -1 A B = x D | F x A B
12 11 a1i φ x D F x -1 A B = x D | F x A B
13 9 12 eqtrd φ F -1 A B = x D | F x A B
14 nfv x φ
15 1 uniexd φ S V
16 1 2 3 smfdmss φ D S
17 15 16 ssexd φ D V
18 6 ffvelrnda φ x D F x
19 7 2 eqeltrrd φ x D F x SMblFn S
20 14 1 17 18 19 4 5 smfpimioompt φ x D | F x A B S 𝑡 D
21 13 20 eqeltrd φ F -1 A B S 𝑡 D