Metamath Proof Explorer


Theorem smndex1id

Description: The modulo function I is the identity of the monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) . (Contributed by AV, 16-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I=x0xmodN
smndex1ibas.g G=n0..^Nx0n
smndex1mgm.b B=In0..^NGn
smndex1mgm.s S=M𝑠B
Assertion smndex1id I=0S

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I=x0xmodN
4 smndex1ibas.g G=n0..^Nx0n
5 smndex1mgm.b B=In0..^NGn
6 smndex1mgm.s S=M𝑠B
7 nn0ex 0V
8 7 mptex x0xmodNV
9 3 8 eqeltri IV
10 9 snid II
11 elun1 IIIIn0..^NGn
12 10 11 ax-mp IIn0..^NGn
13 12 5 eleqtrri IB
14 1 2 3 4 5 6 smndex1bas BaseS=B
15 14 eqcomi B=BaseS
16 15 a1i IBB=BaseS
17 snex IV
18 ovex 0..^NV
19 snex GnV
20 18 19 iunex n0..^NGnV
21 17 20 unex In0..^NGnV
22 5 21 eqeltri BV
23 eqid +M=+M
24 6 23 ressplusg BV+M=+S
25 22 24 mp1i IB+M=+S
26 id IBIB
27 1 2 3 smndex1ibas IBaseM
28 27 a1i IBIBaseM
29 1 2 3 4 5 smndex1basss BBaseM
30 29 sseli aBaBaseM
31 eqid BaseM=BaseM
32 1 31 23 efmndov IBaseMaBaseMI+Ma=Ia
33 28 30 32 syl2an IBaBI+Ma=Ia
34 1 2 3 4 5 6 smndex1mndlem aBIa=aaI=a
35 34 simpld aBIa=a
36 35 adantl IBaBIa=a
37 33 36 eqtrd IBaBI+Ma=a
38 1 31 23 efmndov aBaseMIBaseMa+MI=aI
39 30 28 38 syl2anr IBaBa+MI=aI
40 34 simprd aBaI=a
41 40 adantl IBaBaI=a
42 39 41 eqtrd IBaBa+MI=a
43 16 25 26 37 42 grpidd IBI=0S
44 13 43 ax-mp I=0S