Database
BASIC ALGEBRAIC STRUCTURES
Groups
Direct products
Direct products (extension)
smndlsmidm
Next ⟩
lsmub1
Metamath Proof Explorer
Ascii
Unicode
Theorem
smndlsmidm
Description:
The direct product is idempotent for submonoids.
(Contributed by
AV
, 27-Dec-2023)
Ref
Expression
Hypothesis
lsmub1.p
⊢
⊕
˙
=
LSSum
⁡
G
Assertion
smndlsmidm
⊢
U
∈
SubMnd
⁡
G
→
U
⊕
˙
U
=
U
Proof
Step
Hyp
Ref
Expression
1
lsmub1.p
⊢
⊕
˙
=
LSSum
⁡
G
2
elfvdm
⊢
U
∈
SubMnd
⁡
G
→
G
∈
dom
⁡
SubMnd
3
eqid
⊢
Base
G
=
Base
G
4
3
submss
⊢
U
∈
SubMnd
⁡
G
→
U
⊆
Base
G
5
eqid
⊢
+
G
=
+
G
6
3
5
1
lsmvalx
⊢
G
∈
dom
⁡
SubMnd
∧
U
⊆
Base
G
∧
U
⊆
Base
G
→
U
⊕
˙
U
=
ran
⁡
x
∈
U
,
y
∈
U
⟼
x
+
G
y
7
2
4
4
6
syl3anc
⊢
U
∈
SubMnd
⁡
G
→
U
⊕
˙
U
=
ran
⁡
x
∈
U
,
y
∈
U
⟼
x
+
G
y
8
5
submcl
⊢
U
∈
SubMnd
⁡
G
∧
x
∈
U
∧
y
∈
U
→
x
+
G
y
∈
U
9
8
3expb
⊢
U
∈
SubMnd
⁡
G
∧
x
∈
U
∧
y
∈
U
→
x
+
G
y
∈
U
10
9
ralrimivva
⊢
U
∈
SubMnd
⁡
G
→
∀
x
∈
U
∀
y
∈
U
x
+
G
y
∈
U
11
eqid
⊢
x
∈
U
,
y
∈
U
⟼
x
+
G
y
=
x
∈
U
,
y
∈
U
⟼
x
+
G
y
12
11
fmpo
⊢
∀
x
∈
U
∀
y
∈
U
x
+
G
y
∈
U
↔
x
∈
U
,
y
∈
U
⟼
x
+
G
y
:
U
×
U
⟶
U
13
10
12
sylib
⊢
U
∈
SubMnd
⁡
G
→
x
∈
U
,
y
∈
U
⟼
x
+
G
y
:
U
×
U
⟶
U
14
13
frnd
⊢
U
∈
SubMnd
⁡
G
→
ran
⁡
x
∈
U
,
y
∈
U
⟼
x
+
G
y
⊆
U
15
7
14
eqsstrd
⊢
U
∈
SubMnd
⁡
G
→
U
⊕
˙
U
⊆
U
16
3
1
lsmub1x
⊢
U
⊆
Base
G
∧
U
∈
SubMnd
⁡
G
→
U
⊆
U
⊕
˙
U
17
4
16
mpancom
⊢
U
∈
SubMnd
⁡
G
→
U
⊆
U
⊕
˙
U
18
15
17
eqssd
⊢
U
∈
SubMnd
⁡
G
→
U
⊕
˙
U
=
U