Metamath Proof Explorer


Theorem smup1

Description: Rewrite smupp1 using only smul instead of the internal recursive function P . (Contributed by Mario Carneiro, 20-Sep-2016)

Ref Expression
Hypotheses smup1.a φA0
smup1.b φB0
smup1.n φN0
Assertion smup1 φA0..^N+1smulB=A0..^NsmulBsaddn0|NAnNB

Proof

Step Hyp Ref Expression
1 smup1.a φA0
2 smup1.b φB0
3 smup1.n φN0
4 eqid seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
5 1 2 4 3 smupp1 φseq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1Nsaddn0|NAnNB
6 peano2nn0 N0N+10
7 3 6 syl φN+10
8 1 2 4 7 smupval φseq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1N+1=A0..^N+1smulB
9 1 2 4 3 smupval φseq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1N=A0..^NsmulB
10 9 oveq1d φseq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1Nsaddn0|NAnNB=A0..^NsmulBsaddn0|NAnNB
11 5 8 10 3eqtr3d φA0..^N+1smulB=A0..^NsmulBsaddn0|NAnNB