Metamath Proof Explorer


Theorem sn-mullt0d

Description: The product of two negative numbers is positive. (Contributed by SN, 1-Dec-2025)

Ref Expression
Hypotheses sn-mullt0d.a φ A
sn-mullt0d.b φ B
sn-mullt0d.1 φ A < 0
sn-mullt0d.2 φ B < 0
Assertion sn-mullt0d φ 0 < A B

Proof

Step Hyp Ref Expression
1 sn-mullt0d.a φ A
2 sn-mullt0d.b φ B
3 sn-mullt0d.1 φ A < 0
4 sn-mullt0d.2 φ B < 0
5 3 lt0ne0d φ A 0
6 4 lt0ne0d φ B 0
7 5 6 jca φ A 0 B 0
8 neanior A 0 B 0 ¬ A = 0 B = 0
9 7 8 sylib φ ¬ A = 0 B = 0
10 1 2 sn-remul0ord φ A B = 0 A = 0 B = 0
11 9 10 mtbird φ ¬ A B = 0
12 11 neqcomd φ ¬ 0 = A B
13 0red φ 0
14 2 13 4 ltnsymd φ ¬ 0 < B
15 1 2 3 mullt0b1d φ 0 < B A B < 0
16 14 15 mtbid φ ¬ A B < 0
17 ioran ¬ 0 = A B A B < 0 ¬ 0 = A B ¬ A B < 0
18 12 16 17 sylanbrc φ ¬ 0 = A B A B < 0
19 1 2 remulcld φ A B
20 13 19 lttrid φ 0 < A B ¬ 0 = A B A B < 0
21 18 20 mpbird φ 0 < A B