Metamath Proof Explorer


Theorem sprvalpwn0

Description: The set of all unordered pairs over a given set V , expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion sprvalpwn0 VWPairsV=p𝒫V|aVbVp=ab

Proof

Step Hyp Ref Expression
1 sprvalpw VWPairsV=p𝒫V|aVbVp=ab
2 id p=abp=ab
3 vex aV
4 3 prnz ab
5 4 a1i p=abab
6 2 5 eqnetrd p=abp
7 6 a1i aVbVp=abp
8 7 rexlimivv aVbVp=abp
9 8 adantl p𝒫VaVbVp=abp
10 9 pm4.71ri p𝒫VaVbVp=abpp𝒫VaVbVp=ab
11 ancom pp𝒫Vp𝒫Vp
12 11 anbi1i pp𝒫VaVbVp=abp𝒫VpaVbVp=ab
13 anass pp𝒫VaVbVp=abpp𝒫VaVbVp=ab
14 eldifsn p𝒫Vp𝒫Vp
15 14 bicomi p𝒫Vpp𝒫V
16 15 anbi1i p𝒫VpaVbVp=abp𝒫VaVbVp=ab
17 12 13 16 3bitr3i pp𝒫VaVbVp=abp𝒫VaVbVp=ab
18 10 17 bitri p𝒫VaVbVp=abp𝒫VaVbVp=ab
19 18 rabbia2 p𝒫V|aVbVp=ab=p𝒫V|aVbVp=ab
20 1 19 eqtrdi VWPairsV=p𝒫V|aVbVp=ab