Metamath Proof Explorer


Theorem sqrt0

Description: The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion sqrt0 0=0

Proof

Step Hyp Ref Expression
1 0cn 0
2 sqrtval 00=ιx|x2=00xix+
3 1 2 ax-mp 0=ιx|x2=00xix+
4 id 00
5 sqeq0 xx2=0x=0
6 5 biimpa xx2=0x=0
7 6 3ad2antr1 xx2=00xix+x=0
8 7 ex xx2=00xix+x=0
9 sq0i x=0x2=0
10 0le0 00
11 fveq2 x=0x=0
12 re0 0=0
13 11 12 eqtrdi x=0x=0
14 10 13 breqtrrid x=00x
15 0re 0
16 eleq1 x=0x0
17 15 16 mpbiri x=0x
18 rennim xix+
19 17 18 syl x=0ix+
20 9 14 19 3jca x=0x2=00xix+
21 8 20 impbid1 xx2=00xix+x=0
22 21 adantl 0xx2=00xix+x=0
23 4 22 riota5 0ιx|x2=00xix+=0
24 1 23 ax-mp ιx|x2=00xix+=0
25 3 24 eqtri 0=0