Metamath Proof Explorer


Theorem sqsscirc2

Description: The complex square of side D is a subset of the complex disc of radius D . (Contributed by Thierry Arnoux, 25-Sep-2017)

Ref Expression
Assertion sqsscirc2 ABD+BA<D2BA<D2BA<D

Proof

Step Hyp Ref Expression
1 simplr ABD+B
2 simpll ABD+A
3 1 2 subcld ABD+BA
4 3 recld ABD+BA
5 4 recnd ABD+BA
6 5 abscld ABD+BA
7 5 absge0d ABD+0BA
8 6 7 jca ABD+BA0BA
9 3 imcld ABD+BA
10 9 recnd ABD+BA
11 10 abscld ABD+BA
12 10 absge0d ABD+0BA
13 11 12 jca ABD+BA0BA
14 simpr ABD+D+
15 sqsscirc1 BA0BABA0BAD+BA<D2BA<D2BA2+BA2<D
16 8 13 14 15 syl21anc ABD+BA<D2BA<D2BA2+BA2<D
17 3 absval2d ABD+BA=BA2+BA2
18 17 breq1d ABD+BA<DBA2+BA2<D
19 absresq BABA2=BA2
20 4 19 syl ABD+BA2=BA2
21 absresq BABA2=BA2
22 9 21 syl ABD+BA2=BA2
23 20 22 oveq12d ABD+BA2+BA2=BA2+BA2
24 23 fveq2d ABD+BA2+BA2=BA2+BA2
25 24 breq1d ABD+BA2+BA2<DBA2+BA2<D
26 18 25 bitr4d ABD+BA<DBA2+BA2<D
27 16 26 sylibrd ABD+BA<D2BA<D2BA<D