Metamath Proof Explorer


Theorem squeezedltsq

Description: If a real value is squeezed between two others, its square is less than square of at least one of them. Deduction form. (Contributed by Ender Ting, 31-Oct-2025)

Ref Expression
Hypotheses squeezedltsq.1 φ A
squeezedltsq.2 φ B
squeezedltsq.3 φ C
squeezedltsq.4 φ A < B
squeezedltsq.5 φ B < C
Assertion squeezedltsq φ B B < A A B B < C C

Proof

Step Hyp Ref Expression
1 squeezedltsq.1 φ A
2 squeezedltsq.2 φ B
3 squeezedltsq.3 φ C
4 squeezedltsq.4 φ A < B
5 squeezedltsq.5 φ B < C
6 2 renegcld φ B
7 6 adantr φ B 0 B
8 simpr φ B 0 B 0
9 2 adantr φ B 0 B
10 le0neg1 B B 0 0 B
11 9 10 syl φ B 0 B 0 0 B
12 8 11 mpbid φ B 0 0 B
13 7 12 jca φ B 0 B 0 B
14 1 renegcld φ A
15 14 adantr φ B 0 A
16 1 2 jca φ A B
17 ltneg A B A < B B < A
18 16 17 syl φ A < B B < A
19 4 18 mpbid φ B < A
20 19 adantr φ B 0 B < A
21 13 15 20 3jca φ B 0 B 0 B A B < A
22 lt2msq1 B 0 B A B < A B B < A A
23 21 22 syl φ B 0 B B < A A
24 recn B B
25 mul2neg B B B B = B B
26 24 24 25 syl2anc B B B = B B
27 2 26 syl φ B B = B B
28 recn A A
29 mul2neg A A A A = A A
30 28 28 29 syl2anc A A A = A A
31 1 30 syl φ A A = A A
32 27 31 breq12d φ B B < A A B B < A A
33 32 adantr φ B 0 B B < A A B B < A A
34 23 33 mpbid φ B 0 B B < A A
35 34 orcd φ B 0 B B < A A B B < C C
36 2 anim1i φ 0 B B 0 B
37 3 adantr φ 0 B C
38 5 adantr φ 0 B B < C
39 36 37 38 3jca φ 0 B B 0 B C B < C
40 lt2msq1 B 0 B C B < C B B < C C
41 39 40 syl φ 0 B B B < C C
42 41 olcd φ 0 B B B < A A B B < C C
43 0re 0
44 43 jctr B B 0
45 letric B 0 B 0 0 B
46 2 44 45 3syl φ B 0 0 B
47 35 42 46 mpjaodan φ B B < A A B B < C C