Metamath Proof Explorer


Theorem sralem

Description: Lemma for srabase and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses srapart.a φA=subringAlgWS
srapart.s φSBaseW
sralem.1 E=SlotEndx
sralem.2 ScalarndxEndx
sralem.3 ndxEndx
sralem.4 𝑖ndxEndx
Assertion sralem φEW=EA

Proof

Step Hyp Ref Expression
1 srapart.a φA=subringAlgWS
2 srapart.s φSBaseW
3 sralem.1 E=SlotEndx
4 sralem.2 ScalarndxEndx
5 sralem.3 ndxEndx
6 sralem.4 𝑖ndxEndx
7 4 necomi EndxScalarndx
8 3 7 setsnid EW=EWsSetScalarndxW𝑠S
9 5 necomi Endxndx
10 3 9 setsnid EWsSetScalarndxW𝑠S=EWsSetScalarndxW𝑠SsSetndxW
11 6 necomi Endx𝑖ndx
12 3 11 setsnid EWsSetScalarndxW𝑠SsSetndxW=EWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
13 8 10 12 3eqtri EW=EWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
14 1 adantl WVφA=subringAlgWS
15 sraval WVSBaseWsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
16 2 15 sylan2 WVφsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
17 14 16 eqtrd WVφA=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
18 17 fveq2d WVφEA=EWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
19 13 18 eqtr4id WVφEW=EA
20 3 str0 =E
21 fvprc ¬WVEW=
22 21 adantr ¬WVφEW=
23 fv2prc ¬WVsubringAlgWS=
24 1 23 sylan9eqr ¬WVφA=
25 24 fveq2d ¬WVφEA=E
26 20 22 25 3eqtr4a ¬WVφEW=EA
27 19 26 pm2.61ian φEW=EA