Metamath Proof Explorer


Theorem sralem

Description: Lemma for srabase and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
sralem.1 E = Slot E ndx
sralem.2 Scalar ndx E ndx
sralem.3 ndx E ndx
sralem.4 𝑖 ndx E ndx
Assertion sralem φ E W = E A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 sralem.1 E = Slot E ndx
4 sralem.2 Scalar ndx E ndx
5 sralem.3 ndx E ndx
6 sralem.4 𝑖 ndx E ndx
7 4 necomi E ndx Scalar ndx
8 3 7 setsnid E W = E W sSet Scalar ndx W 𝑠 S
9 5 necomi E ndx ndx
10 3 9 setsnid E W sSet Scalar ndx W 𝑠 S = E W sSet Scalar ndx W 𝑠 S sSet ndx W
11 6 necomi E ndx 𝑖 ndx
12 3 11 setsnid E W sSet Scalar ndx W 𝑠 S sSet ndx W = E W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
13 8 10 12 3eqtri E W = E W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
14 1 adantl W V φ A = subringAlg W S
15 sraval W V S Base W subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
16 2 15 sylan2 W V φ subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
17 14 16 eqtrd W V φ A = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
18 17 fveq2d W V φ E A = E W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
19 13 18 eqtr4id W V φ E W = E A
20 3 str0 = E
21 fvprc ¬ W V E W =
22 21 adantr ¬ W V φ E W =
23 fv2prc ¬ W V subringAlg W S =
24 1 23 sylan9eqr ¬ W V φ A =
25 24 fveq2d ¬ W V φ E A = E
26 20 22 25 3eqtr4a ¬ W V φ E W = E A
27 19 26 pm2.61ian φ E W = E A