Metamath Proof Explorer


Theorem sralemOLD

Description: Obsolete version of sralem as of 29-Oct-2024. Lemma for srabase and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses srapart.a φA=subringAlgWS
srapart.s φSBaseW
sralemOLD.1 E=SlotN
sralemOLD.2 N
sralemOLD.3 N<58<N
Assertion sralemOLD φEW=EA

Proof

Step Hyp Ref Expression
1 srapart.a φA=subringAlgWS
2 srapart.s φSBaseW
3 sralemOLD.1 E=SlotN
4 sralemOLD.2 N
5 sralemOLD.3 N<58<N
6 3 4 ndxid E=SlotEndx
7 4 nnrei N
8 5re 5
9 7 8 ltnei N<55N
10 9 necomd N<5N5
11 5lt8 5<8
12 8re 8
13 8 12 7 lttri 5<88<N5<N
14 11 13 mpan 8<N5<N
15 8 7 ltnei 5<NN5
16 14 15 syl 8<NN5
17 10 16 jaoi N<58<NN5
18 5 17 ax-mp N5
19 3 4 ndxarg Endx=N
20 scandx Scalarndx=5
21 19 20 neeq12i EndxScalarndxN5
22 18 21 mpbir EndxScalarndx
23 6 22 setsnid EW=EWsSetScalarndxW𝑠S
24 5lt6 5<6
25 6re 6
26 7 8 25 lttri N<55<6N<6
27 24 26 mpan2 N<5N<6
28 7 25 ltnei N<66N
29 27 28 syl N<56N
30 29 necomd N<5N6
31 6lt8 6<8
32 25 12 7 lttri 6<88<N6<N
33 31 32 mpan 8<N6<N
34 25 7 ltnei 6<NN6
35 33 34 syl 8<NN6
36 30 35 jaoi N<58<NN6
37 5 36 ax-mp N6
38 vscandx ndx=6
39 19 38 neeq12i EndxndxN6
40 37 39 mpbir Endxndx
41 6 40 setsnid EWsSetScalarndxW𝑠S=EWsSetScalarndxW𝑠SsSetndxW
42 7 8 12 lttri N<55<8N<8
43 11 42 mpan2 N<5N<8
44 7 12 ltnei N<88N
45 43 44 syl N<58N
46 45 necomd N<5N8
47 12 7 ltnei 8<NN8
48 46 47 jaoi N<58<NN8
49 5 48 ax-mp N8
50 ipndx 𝑖ndx=8
51 19 50 neeq12i Endx𝑖ndxN8
52 49 51 mpbir Endx𝑖ndx
53 6 52 setsnid EWsSetScalarndxW𝑠SsSetndxW=EWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
54 23 41 53 3eqtri EW=EWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
55 1 adantl WVφA=subringAlgWS
56 sraval WVSBaseWsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
57 2 56 sylan2 WVφsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
58 55 57 eqtrd WVφA=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
59 58 fveq2d WVφEA=EWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
60 54 59 eqtr4id WVφEW=EA
61 3 str0 =E
62 fvprc ¬WVEW=
63 62 adantr ¬WVφEW=
64 fv2prc ¬WVsubringAlgWS=
65 1 64 sylan9eqr ¬WVφA=
66 65 fveq2d ¬WVφEA=E
67 61 63 66 3eqtr4a ¬WVφEW=EA
68 60 67 pm2.61ian φEW=EA