Metamath Proof Explorer


Theorem sralemOLD

Description: Obsolete version of sralem as of 29-Oct-2024. Lemma for srabase and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
sralemOLD.1 E = Slot N
sralemOLD.2 N
sralemOLD.3 N < 5 8 < N
Assertion sralemOLD φ E W = E A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 sralemOLD.1 E = Slot N
4 sralemOLD.2 N
5 sralemOLD.3 N < 5 8 < N
6 3 4 ndxid E = Slot E ndx
7 4 nnrei N
8 5re 5
9 7 8 ltnei N < 5 5 N
10 9 necomd N < 5 N 5
11 5lt8 5 < 8
12 8re 8
13 8 12 7 lttri 5 < 8 8 < N 5 < N
14 11 13 mpan 8 < N 5 < N
15 8 7 ltnei 5 < N N 5
16 14 15 syl 8 < N N 5
17 10 16 jaoi N < 5 8 < N N 5
18 5 17 ax-mp N 5
19 3 4 ndxarg E ndx = N
20 scandx Scalar ndx = 5
21 19 20 neeq12i E ndx Scalar ndx N 5
22 18 21 mpbir E ndx Scalar ndx
23 6 22 setsnid E W = E W sSet Scalar ndx W 𝑠 S
24 5lt6 5 < 6
25 6re 6
26 7 8 25 lttri N < 5 5 < 6 N < 6
27 24 26 mpan2 N < 5 N < 6
28 7 25 ltnei N < 6 6 N
29 27 28 syl N < 5 6 N
30 29 necomd N < 5 N 6
31 6lt8 6 < 8
32 25 12 7 lttri 6 < 8 8 < N 6 < N
33 31 32 mpan 8 < N 6 < N
34 25 7 ltnei 6 < N N 6
35 33 34 syl 8 < N N 6
36 30 35 jaoi N < 5 8 < N N 6
37 5 36 ax-mp N 6
38 vscandx ndx = 6
39 19 38 neeq12i E ndx ndx N 6
40 37 39 mpbir E ndx ndx
41 6 40 setsnid E W sSet Scalar ndx W 𝑠 S = E W sSet Scalar ndx W 𝑠 S sSet ndx W
42 7 8 12 lttri N < 5 5 < 8 N < 8
43 11 42 mpan2 N < 5 N < 8
44 7 12 ltnei N < 8 8 N
45 43 44 syl N < 5 8 N
46 45 necomd N < 5 N 8
47 12 7 ltnei 8 < N N 8
48 46 47 jaoi N < 5 8 < N N 8
49 5 48 ax-mp N 8
50 ipndx 𝑖 ndx = 8
51 19 50 neeq12i E ndx 𝑖 ndx N 8
52 49 51 mpbir E ndx 𝑖 ndx
53 6 52 setsnid E W sSet Scalar ndx W 𝑠 S sSet ndx W = E W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
54 23 41 53 3eqtri E W = E W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
55 1 adantl W V φ A = subringAlg W S
56 sraval W V S Base W subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
57 2 56 sylan2 W V φ subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
58 55 57 eqtrd W V φ A = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
59 58 fveq2d W V φ E A = E W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
60 54 59 eqtr4id W V φ E W = E A
61 3 str0 = E
62 fvprc ¬ W V E W =
63 62 adantr ¬ W V φ E W =
64 fv2prc ¬ W V subringAlg W S =
65 1 64 sylan9eqr ¬ W V φ A =
66 65 fveq2d ¬ W V φ E A = E
67 61 63 66 3eqtr4a ¬ W V φ E W = E A
68 60 67 pm2.61ian φ E W = E A