Metamath Proof Explorer


Theorem srasca

Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses srapart.a φA=subringAlgWS
srapart.s φSBaseW
Assertion srasca φW𝑠S=ScalarA

Proof

Step Hyp Ref Expression
1 srapart.a φA=subringAlgWS
2 srapart.s φSBaseW
3 scaid Scalar=SlotScalarndx
4 vscandxnscandx ndxScalarndx
5 4 necomi Scalarndxndx
6 3 5 setsnid ScalarWsSetScalarndxW𝑠S=ScalarWsSetScalarndxW𝑠SsSetndxW
7 slotsdifipndx ndx𝑖ndxScalarndx𝑖ndx
8 7 simpri Scalarndx𝑖ndx
9 3 8 setsnid ScalarWsSetScalarndxW𝑠SsSetndxW=ScalarWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
10 6 9 eqtri ScalarWsSetScalarndxW𝑠S=ScalarWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
11 ovexd φW𝑠SV
12 3 setsid WVW𝑠SVW𝑠S=ScalarWsSetScalarndxW𝑠S
13 11 12 sylan2 WVφW𝑠S=ScalarWsSetScalarndxW𝑠S
14 1 adantl WVφA=subringAlgWS
15 sraval WVSBaseWsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
16 2 15 sylan2 WVφsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
17 14 16 eqtrd WVφA=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
18 17 fveq2d WVφScalarA=ScalarWsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
19 10 13 18 3eqtr4a WVφW𝑠S=ScalarA
20 3 str0 =Scalar
21 reldmress Reldom𝑠
22 21 ovprc1 ¬WVW𝑠S=
23 22 adantr ¬WVφW𝑠S=
24 fv2prc ¬WVsubringAlgWS=
25 1 24 sylan9eqr ¬WVφA=
26 25 fveq2d ¬WVφScalarA=Scalar
27 20 23 26 3eqtr4a ¬WVφW𝑠S=ScalarA
28 19 27 pm2.61ian φW𝑠S=ScalarA