Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srapart.a | |
|
srapart.s | |
||
Assertion | srasca | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srapart.a | |
|
2 | srapart.s | |
|
3 | scaid | |
|
4 | vscandxnscandx | |
|
5 | 4 | necomi | |
6 | 3 5 | setsnid | |
7 | slotsdifipndx | |
|
8 | 7 | simpri | |
9 | 3 8 | setsnid | |
10 | 6 9 | eqtri | |
11 | ovexd | |
|
12 | 3 | setsid | |
13 | 11 12 | sylan2 | |
14 | 1 | adantl | |
15 | sraval | |
|
16 | 2 15 | sylan2 | |
17 | 14 16 | eqtrd | |
18 | 17 | fveq2d | |
19 | 10 13 18 | 3eqtr4a | |
20 | 3 | str0 | |
21 | reldmress | |
|
22 | 21 | ovprc1 | |
23 | 22 | adantr | |
24 | fv2prc | |
|
25 | 1 24 | sylan9eqr | |
26 | 25 | fveq2d | |
27 | 20 23 26 | 3eqtr4a | |
28 | 19 27 | pm2.61ian | |