Metamath Proof Explorer


Theorem ss2iundf

Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020)

Ref Expression
Hypotheses ss2iundf.xph xφ
ss2iundf.yph yφ
ss2iundf.y _yY
ss2iundf.a _yA
ss2iundf.b _yB
ss2iundf.xc _xC
ss2iundf.yc _yC
ss2iundf.d _xD
ss2iundf.g _yG
ss2iundf.el φxAYC
ss2iundf.sub φxAy=YD=G
ss2iundf.ss φxABG
Assertion ss2iundf φxAByCD

Proof

Step Hyp Ref Expression
1 ss2iundf.xph xφ
2 ss2iundf.yph yφ
3 ss2iundf.y _yY
4 ss2iundf.a _yA
5 ss2iundf.b _yB
6 ss2iundf.xc _xC
7 ss2iundf.yc _yC
8 ss2iundf.d _xD
9 ss2iundf.g _yG
10 ss2iundf.el φxAYC
11 ss2iundf.sub φxAy=YD=G
12 ss2iundf.ss φxABG
13 df-ral yC¬BDyyC¬BD
14 4 nfcri yxA
15 2 14 nfan yφxA
16 simpr φxAy=Yy=Y
17 16 eleq1d φxAy=YyCYC
18 17 biimprd φxAy=YYCyC
19 11 sseq2d φxAy=YBDBG
20 19 3expa φxAy=YBDBG
21 20 notbid φxAy=Y¬BD¬BG
22 21 biimpd φxAy=Y¬BD¬BG
23 18 22 imim12d φxAy=YyC¬BDYC¬BG
24 23 ex φxAy=YyC¬BDYC¬BG
25 15 24 alrimi φxAyy=YyC¬BDYC¬BG
26 3 7 nfel yYC
27 5 9 nfss yBG
28 27 nfn y¬BG
29 26 28 nfim yYC¬BG
30 29 3 spcimgft yy=YyC¬BDYC¬BGYCyyC¬BDYC¬BG
31 25 10 30 sylc φxAyyC¬BDYC¬BG
32 10 31 mpid φxAyyC¬BD¬BG
33 13 32 biimtrid φxAyC¬BD¬BG
34 33 con2d φxABG¬yC¬BD
35 dfrex2 yCBD¬yC¬BD
36 34 35 imbitrrdi φxABGyCBD
37 12 36 mpd φxAyCBD
38 1 37 ralrimia φxAyCBD
39 ssel BDzBzD
40 39 reximi yCBDyCzBzD
41 5 nfcri yzB
42 41 r19.37 yCzBzDzByCzD
43 40 42 syl yCBDzByCzD
44 eliun zyCDyCzD
45 43 44 imbitrrdi yCBDzBzyCD
46 45 ssrdv yCBDByCD
47 46 ralimi xAyCBDxAByCD
48 6 8 nfiun _xyCD
49 48 iunssf xAByCDxAByCD
50 47 49 sylibr xAyCBDxAByCD
51 38 50 syl φxAByCD