Metamath Proof Explorer


Theorem ssctr

Description: The subcategory subset relation is transitive. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion ssctr A cat B B cat C A cat C

Proof

Step Hyp Ref Expression
1 simpl A cat B B cat C A cat B
2 eqidd A cat B B cat C dom dom A = dom dom A
3 1 2 sscfn1 A cat B B cat C A Fn dom dom A × dom dom A
4 eqidd A cat B B cat C dom dom B = dom dom B
5 1 4 sscfn2 A cat B B cat C B Fn dom dom B × dom dom B
6 3 5 1 ssc1 A cat B B cat C dom dom A dom dom B
7 simpr A cat B B cat C B cat C
8 eqidd A cat B B cat C dom dom C = dom dom C
9 7 8 sscfn2 A cat B B cat C C Fn dom dom C × dom dom C
10 5 9 7 ssc1 A cat B B cat C dom dom B dom dom C
11 6 10 sstrd A cat B B cat C dom dom A dom dom C
12 3 adantr A cat B B cat C x dom dom A y dom dom A A Fn dom dom A × dom dom A
13 1 adantr A cat B B cat C x dom dom A y dom dom A A cat B
14 simprl A cat B B cat C x dom dom A y dom dom A x dom dom A
15 simprr A cat B B cat C x dom dom A y dom dom A y dom dom A
16 12 13 14 15 ssc2 A cat B B cat C x dom dom A y dom dom A x A y x B y
17 5 adantr A cat B B cat C x dom dom A y dom dom A B Fn dom dom B × dom dom B
18 7 adantr A cat B B cat C x dom dom A y dom dom A B cat C
19 6 adantr A cat B B cat C x dom dom A y dom dom A dom dom A dom dom B
20 19 14 sseldd A cat B B cat C x dom dom A y dom dom A x dom dom B
21 19 15 sseldd A cat B B cat C x dom dom A y dom dom A y dom dom B
22 17 18 20 21 ssc2 A cat B B cat C x dom dom A y dom dom A x B y x C y
23 16 22 sstrd A cat B B cat C x dom dom A y dom dom A x A y x C y
24 23 ralrimivva A cat B B cat C x dom dom A y dom dom A x A y x C y
25 sscrel Rel cat
26 25 brrelex2i B cat C C V
27 26 adantl A cat B B cat C C V
28 dmexg C V dom C V
29 dmexg dom C V dom dom C V
30 27 28 29 3syl A cat B B cat C dom dom C V
31 3 9 30 isssc A cat B B cat C A cat C dom dom A dom dom C x dom dom A y dom dom A x A y x C y
32 11 24 31 mpbir2and A cat B B cat C A cat C