Metamath Proof Explorer


Theorem sseqfres

Description: The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019)

Ref Expression
Hypotheses sseqval.1 φSV
sseqval.2 φMWordS
sseqval.3 W=WordS.-1M
sseqval.4 φF:WS
Assertion sseqfres φMseqstrF0..^M=M

Proof

Step Hyp Ref Expression
1 sseqval.1 φSV
2 sseqval.2 φMWordS
3 sseqval.3 W=WordS.-1M
4 sseqval.4 φF:WS
5 1 adantr φi0..^MSV
6 2 adantr φi0..^MMWordS
7 4 adantr φi0..^MF:WS
8 simpr φi0..^Mi0..^M
9 5 6 3 7 8 sseqfv1 φi0..^MMseqstrFi=Mi
10 9 ralrimiva φi0..^MMseqstrFi=Mi
11 1 2 3 4 sseqfn φMseqstrFFn0
12 wrdfn MWordSMFn0..^M
13 2 12 syl φMFn0..^M
14 fzo0ssnn0 0..^M0
15 14 a1i φ0..^M0
16 fvreseq1 MseqstrFFn0MFn0..^M0..^M0MseqstrF0..^M=Mi0..^MMseqstrFi=Mi
17 11 13 15 16 syl21anc φMseqstrF0..^M=Mi0..^MMseqstrFi=Mi
18 10 17 mpbird φMseqstrF0..^M=M