Metamath Proof Explorer


Theorem ssrelOLD

Description: Obsolete version of ssrel as of 11-Dec-2024. (Contributed by NM, 2-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ssrelOLD RelAABxyxyAxyB

Proof

Step Hyp Ref Expression
1 ssel ABxyAxyB
2 1 alrimivv ABxyxyAxyB
3 df-rel RelAAV×V
4 dfss2 AV×VzzAzV×V
5 3 4 sylbb RelAzzAzV×V
6 df-xp V×V=xy|xVyV
7 df-opab xy|xVyV=z|xyz=xyxVyV
8 6 7 eqtri V×V=z|xyz=xyxVyV
9 8 eqabri zV×Vxyz=xyxVyV
10 simpl z=xyxVyVz=xy
11 10 2eximi xyz=xyxVyVxyz=xy
12 9 11 sylbi zV×Vxyz=xy
13 12 imim2i zAzV×VzAxyz=xy
14 5 13 sylg RelAzzAxyz=xy
15 eleq1 z=xyzAxyA
16 eleq1 z=xyzBxyB
17 15 16 imbi12d z=xyzAzBxyAxyB
18 17 biimprcd xyAxyBz=xyzAzB
19 18 2alimi xyxyAxyBxyz=xyzAzB
20 19.23vv xyz=xyzAzBxyz=xyzAzB
21 19 20 sylib xyxyAxyBxyz=xyzAzB
22 21 com23 xyxyAxyBzAxyz=xyzB
23 22 a2d xyxyAxyBzAxyz=xyzAzB
24 23 alimdv xyxyAxyBzzAxyz=xyzzAzB
25 14 24 syl5 xyxyAxyBRelAzzAzB
26 dfss2 ABzzAzB
27 25 26 syl6ibr xyxyAxyBRelAAB
28 27 com12 RelAxyxyAxyBAB
29 2 28 impbid2 RelAABxyxyAxyB