Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006) (Proof shortened by Peter Mazsa, 2-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | ssrnres | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 | |
|
2 | 1 | rnssi | |
3 | rnxpss | |
|
4 | 2 3 | sstri | |
5 | eqss | |
|
6 | 4 5 | mpbiran | |
7 | inxpssres | |
|
8 | 7 | rnssi | |
9 | sstr | |
|
10 | 8 9 | mpan2 | |
11 | ssel | |
|
12 | vex | |
|
13 | 12 | elrn2 | |
14 | 11 13 | imbitrdi | |
15 | 14 | ancld | |
16 | 12 | elrn2 | |
17 | opelinxp | |
|
18 | 12 | opelresi | |
19 | 18 | bianassc | |
20 | 17 19 | bitr4i | |
21 | 20 | exbii | |
22 | 19.42v | |
|
23 | 16 21 22 | 3bitri | |
24 | 15 23 | imbitrrdi | |
25 | 24 | ssrdv | |
26 | 10 25 | impbii | |
27 | 6 26 | bitr2i | |