Metamath Proof Explorer


Theorem ssrnres

Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion ssrnres BranCAranCA×B=B

Proof

Step Hyp Ref Expression
1 inss2 CA×BA×B
2 1 rnssi ranCA×BranA×B
3 rnxpss ranA×BB
4 2 3 sstri ranCA×BB
5 eqss ranCA×B=BranCA×BBBranCA×B
6 4 5 mpbiran ranCA×B=BBranCA×B
7 inxpssres CA×BCA
8 7 rnssi ranCA×BranCA
9 sstr BranCA×BranCA×BranCABranCA
10 8 9 mpan2 BranCA×BBranCA
11 ssel BranCAyByranCA
12 vex yV
13 12 elrn2 yranCAxxyCA
14 11 13 imbitrdi BranCAyBxxyCA
15 14 ancld BranCAyByBxxyCA
16 12 elrn2 yranCA×BxxyCA×B
17 opelinxp xyCA×BxAyBxyC
18 12 opelresi xyCAxAxyC
19 18 bianassc yBxyCAxAyBxyC
20 17 19 bitr4i xyCA×ByBxyCA
21 20 exbii xxyCA×BxyBxyCA
22 19.42v xyBxyCAyBxxyCA
23 16 21 22 3bitri yranCA×ByBxxyCA
24 15 23 imbitrrdi BranCAyByranCA×B
25 24 ssrdv BranCABranCA×B
26 10 25 impbii BranCA×BBranCA
27 6 26 bitr2i BranCAranCA×B=B