Metamath Proof Explorer


Theorem sssalgen

Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypothesis sssalgen.1 S = SalGen X
Assertion sssalgen X V X S

Proof

Step Hyp Ref Expression
1 sssalgen.1 S = SalGen X
2 ssint X s SAlg | s = X X s t s SAlg | s = X X s X t
3 unieq s = t s = t
4 3 eqeq1d s = t s = X t = X
5 sseq2 s = t X s X t
6 4 5 anbi12d s = t s = X X s t = X X t
7 6 elrab t s SAlg | s = X X s t SAlg t = X X t
8 7 biimpi t s SAlg | s = X X s t SAlg t = X X t
9 8 simprrd t s SAlg | s = X X s X t
10 2 9 mprgbir X s SAlg | s = X X s
11 10 a1i X V X s SAlg | s = X X s
12 salgenval X V SalGen X = s SAlg | s = X X s
13 1 12 eqtr2id X V s SAlg | s = X X s = S
14 11 13 sseqtrd X V X S