Metamath Proof Explorer


Theorem submrc

Description: In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypotheses submrc.f F=mrClsC
submrc.g G=mrClsC𝒫D
Assertion submrc CMooreXDCUDGU=FU

Proof

Step Hyp Ref Expression
1 submrc.f F=mrClsC
2 submrc.g G=mrClsC𝒫D
3 submre CMooreXDCC𝒫DMooreD
4 3 3adant3 CMooreXDCUDC𝒫DMooreD
5 simp1 CMooreXDCUDCMooreX
6 simp3 CMooreXDCUDUD
7 mress CMooreXDCDX
8 7 3adant3 CMooreXDCUDDX
9 6 8 sstrd CMooreXDCUDUX
10 5 1 9 mrcssidd CMooreXDCUDUFU
11 1 mrccl CMooreXUXFUC
12 5 9 11 syl2anc CMooreXDCUDFUC
13 1 mrcsscl CMooreXUDDCFUD
14 13 3com23 CMooreXDCUDFUD
15 fvex FUV
16 15 elpw FU𝒫DFUD
17 14 16 sylibr CMooreXDCUDFU𝒫D
18 12 17 elind CMooreXDCUDFUC𝒫D
19 2 mrcsscl C𝒫DMooreDUFUFUC𝒫DGUFU
20 4 10 18 19 syl3anc CMooreXDCUDGUFU
21 4 2 6 mrcssidd CMooreXDCUDUGU
22 2 mrccl C𝒫DMooreDUDGUC𝒫D
23 4 6 22 syl2anc CMooreXDCUDGUC𝒫D
24 23 elin1d CMooreXDCUDGUC
25 1 mrcsscl CMooreXUGUGUCFUGU
26 5 21 24 25 syl3anc CMooreXDCUDFUGU
27 20 26 eqssd CMooreXDCUDGU=FU