Metamath Proof Explorer


Theorem subrngpropd

Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025)

Ref Expression
Hypotheses subrngpropd.1 φB=BaseK
subrngpropd.2 φB=BaseL
subrngpropd.3 φxByBx+Ky=x+Ly
subrngpropd.4 φxByBxKy=xLy
Assertion subrngpropd Could not format assertion : No typesetting found for |- ( ph -> ( SubRng ` K ) = ( SubRng ` L ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 subrngpropd.1 φB=BaseK
2 subrngpropd.2 φB=BaseL
3 subrngpropd.3 φxByBx+Ky=x+Ly
4 subrngpropd.4 φxByBxKy=xLy
5 1 2 3 4 rngpropd φKRngLRng
6 1 ineq2d φsB=sBaseK
7 eqid K𝑠s=K𝑠s
8 eqid BaseK=BaseK
9 7 8 ressbas sVsBaseK=BaseK𝑠s
10 9 elv sBaseK=BaseK𝑠s
11 6 10 eqtrdi φsB=BaseK𝑠s
12 2 ineq2d φsB=sBaseL
13 eqid L𝑠s=L𝑠s
14 eqid BaseL=BaseL
15 13 14 ressbas sVsBaseL=BaseL𝑠s
16 15 elv sBaseL=BaseL𝑠s
17 12 16 eqtrdi φsB=BaseL𝑠s
18 elinel2 xsBxB
19 elinel2 ysByB
20 18 19 anim12i xsBysBxByB
21 eqid +K=+K
22 7 21 ressplusg sV+K=+K𝑠s
23 22 elv +K=+K𝑠s
24 23 oveqi x+Ky=x+K𝑠sy
25 eqid +L=+L
26 13 25 ressplusg sV+L=+L𝑠s
27 26 elv +L=+L𝑠s
28 27 oveqi x+Ly=x+L𝑠sy
29 3 24 28 3eqtr3g φxByBx+K𝑠sy=x+L𝑠sy
30 20 29 sylan2 φxsBysBx+K𝑠sy=x+L𝑠sy
31 eqid K=K
32 7 31 ressmulr sVK=K𝑠s
33 32 elv K=K𝑠s
34 33 oveqi xKy=xK𝑠sy
35 eqid L=L
36 13 35 ressmulr sVL=L𝑠s
37 36 elv L=L𝑠s
38 37 oveqi xLy=xL𝑠sy
39 4 34 38 3eqtr3g φxByBxK𝑠sy=xL𝑠sy
40 20 39 sylan2 φxsBysBxK𝑠sy=xL𝑠sy
41 11 17 30 40 rngpropd φK𝑠sRngL𝑠sRng
42 1 2 eqtr3d φBaseK=BaseL
43 42 sseq2d φsBaseKsBaseL
44 5 41 43 3anbi123d φKRngK𝑠sRngsBaseKLRngL𝑠sRngsBaseL
45 8 issubrng Could not format ( s e. ( SubRng ` K ) <-> ( K e. Rng /\ ( K |`s s ) e. Rng /\ s C_ ( Base ` K ) ) ) : No typesetting found for |- ( s e. ( SubRng ` K ) <-> ( K e. Rng /\ ( K |`s s ) e. Rng /\ s C_ ( Base ` K ) ) ) with typecode |-
46 14 issubrng Could not format ( s e. ( SubRng ` L ) <-> ( L e. Rng /\ ( L |`s s ) e. Rng /\ s C_ ( Base ` L ) ) ) : No typesetting found for |- ( s e. ( SubRng ` L ) <-> ( L e. Rng /\ ( L |`s s ) e. Rng /\ s C_ ( Base ` L ) ) ) with typecode |-
47 44 45 46 3bitr4g Could not format ( ph -> ( s e. ( SubRng ` K ) <-> s e. ( SubRng ` L ) ) ) : No typesetting found for |- ( ph -> ( s e. ( SubRng ` K ) <-> s e. ( SubRng ` L ) ) ) with typecode |-
48 47 eqrdv Could not format ( ph -> ( SubRng ` K ) = ( SubRng ` L ) ) : No typesetting found for |- ( ph -> ( SubRng ` K ) = ( SubRng ` L ) ) with typecode |-