| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subthinc.1 |  | 
						
							| 2 |  | subthinc.j |  | 
						
							| 3 |  | subthinc.c |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqidd |  | 
						
							| 6 | 2 5 | subcfn |  | 
						
							| 7 | 2 6 4 | subcss1 |  | 
						
							| 8 | 1 4 3 6 7 | rescbas |  | 
						
							| 9 | 1 4 3 6 7 | reschom |  | 
						
							| 10 | 2 | adantr |  | 
						
							| 11 | 6 | adantr |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | simprl |  | 
						
							| 14 |  | simprr |  | 
						
							| 15 | 10 11 12 13 14 | subcss2 |  | 
						
							| 16 | 3 | adantr |  | 
						
							| 17 | 7 | adantr |  | 
						
							| 18 | 17 13 | sseldd |  | 
						
							| 19 | 17 14 | sseldd |  | 
						
							| 20 | 16 18 19 4 12 | thincmo |  | 
						
							| 21 |  | mosssn2 |  | 
						
							| 22 | 20 21 | sylib |  | 
						
							| 23 |  | sstr2 |  | 
						
							| 24 | 23 | eximdv |  | 
						
							| 25 | 15 22 24 | sylc |  | 
						
							| 26 |  | mosssn2 |  | 
						
							| 27 | 25 26 | sylibr |  | 
						
							| 28 | 1 2 | subccat |  | 
						
							| 29 | 8 9 27 28 | isthincd |  |