Metamath Proof Explorer


Theorem succlg

Description: Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025)

Ref Expression
Assertion succlg ABB=B=ω𝑜CCOn1𝑜sucAB

Proof

Step Hyp Ref Expression
1 eleq2 B=ABA
2 noel ¬A
3 2 pm2.21i AsucAB
4 1 3 syl6bi B=ABsucAB
5 4 com12 ABB=sucAB
6 simpl ABB=ω𝑜CCOn1𝑜AB
7 eldifi COn1𝑜COn
8 7 ad2antll ABB=ω𝑜CCOn1𝑜COn
9 omex ωV
10 limom Limω
11 9 10 pm3.2i ωVLimω
12 11 a1i ABB=ω𝑜CCOn1𝑜ωVLimω
13 ondif1 COn1𝑜COnC
14 13 simprbi COn1𝑜C
15 14 ad2antll ABB=ω𝑜CCOn1𝑜C
16 omlimcl2 COnωVLimωCLimω𝑜C
17 8 12 15 16 syl21anc ABB=ω𝑜CCOn1𝑜Limω𝑜C
18 limeq B=ω𝑜CLimBLimω𝑜C
19 18 ad2antrl ABB=ω𝑜CCOn1𝑜LimBLimω𝑜C
20 17 19 mpbird ABB=ω𝑜CCOn1𝑜LimB
21 limsuc LimBABsucAB
22 20 21 syl ABB=ω𝑜CCOn1𝑜ABsucAB
23 6 22 mpbid ABB=ω𝑜CCOn1𝑜sucAB
24 23 ex ABB=ω𝑜CCOn1𝑜sucAB
25 5 24 jaod ABB=B=ω𝑜CCOn1𝑜sucAB
26 25 imp ABB=B=ω𝑜CCOn1𝑜sucAB