Metamath Proof Explorer


Theorem suctrALT

Description: The successor of a transitive class is transitive. The proof of https://us.metamath.org/other/completeusersproof/suctrvd.html is a Virtual Deduction proof verified by automatically transforming it into the Metamath proof of suctrALT using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/suctrro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. See suctr for the original proof. (Contributed by Alan Sare, 11-Apr-2009) (Revised by Alan Sare, 12-Jun-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion suctrALT TrATrsucA

Proof

Step Hyp Ref Expression
1 sssucid AsucA
2 id TrATrA
3 id zyysucAzyysucA
4 3 simpld zyysucAzy
5 id yAyA
6 trel TrAzyyAzA
7 6 3impib TrAzyyAzA
8 7 idiALT TrAzyyAzA
9 2 4 5 8 syl3an TrAzyysucAyAzA
10 1 9 sselid TrAzyysucAyAzsucA
11 10 3expia TrAzyysucAyAzsucA
12 4 adantr zyysucAy=Azy
13 id y=Ay=A
14 13 adantl zyysucAy=Ay=A
15 12 14 eleqtrd zyysucAy=AzA
16 1 15 sselid zyysucAy=AzsucA
17 16 ex zyysucAy=AzsucA
18 17 adantl TrAzyysucAy=AzsucA
19 3 simprd zyysucAysucA
20 elsuci ysucAyAy=A
21 19 20 syl zyysucAyAy=A
22 21 adantl TrAzyysucAyAy=A
23 11 18 22 mpjaod TrAzyysucAzsucA
24 23 ex TrAzyysucAzsucA
25 24 alrimivv TrAzyzyysucAzsucA
26 dftr2 TrsucAzyzyysucAzsucA
27 26 biimpri zyzyysucAzsucATrsucA
28 25 27 syl TrATrsucA