Metamath Proof Explorer


Theorem sumpair

Description: Sum of two distinct complex values. The class expression for A and B normally contain free variable k to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses sumpair.1 φ_kD
sumpair.3 φ_kE
sumupair.1 φAV
sumupair.2 φBW
sumupair.3 φD
sumupair.4 φE
sumupair.5 φAB
sumupair.8 φk=AC=D
sumupair.9 φk=BC=E
Assertion sumpair φkABC=D+E

Proof

Step Hyp Ref Expression
1 sumpair.1 φ_kD
2 sumpair.3 φ_kE
3 sumupair.1 φAV
4 sumupair.2 φBW
5 sumupair.3 φD
6 sumupair.4 φE
7 sumupair.5 φAB
8 sumupair.8 φk=AC=D
9 sumupair.9 φk=BC=E
10 disjsn2 ABAB=
11 7 10 syl φAB=
12 df-pr AB=AB
13 12 a1i φAB=AB
14 prfi ABFin
15 14 a1i φABFin
16 elpri kABk=Ak=B
17 5 adantr φk=AD
18 8 17 eqeltrd φk=AC
19 6 adantr φk=BE
20 9 19 eqeltrd φk=BC
21 18 20 jaodan φk=Ak=BC
22 16 21 sylan2 φkABC
23 11 13 15 22 fsumsplit φkABC=kAC+kBC
24 nfv kφ
25 1 24 8 3 5 sumsnd φkAC=D
26 2 24 9 4 6 sumsnd φkBC=E
27 25 26 oveq12d φkAC+kBC=D+E
28 23 27 eqtrd φkABC=D+E