Metamath Proof Explorer


Theorem sumpr

Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016)

Ref Expression
Hypotheses sumpr.1 k=AC=D
sumpr.2 k=BC=E
sumpr.3 φDE
sumpr.4 φAVBW
sumpr.5 φAB
Assertion sumpr φkABC=D+E

Proof

Step Hyp Ref Expression
1 sumpr.1 k=AC=D
2 sumpr.2 k=BC=E
3 sumpr.3 φDE
4 sumpr.4 φAVBW
5 sumpr.5 φAB
6 disjsn2 ABAB=
7 5 6 syl φAB=
8 df-pr AB=AB
9 8 a1i φAB=AB
10 prfi ABFin
11 10 a1i φABFin
12 1 eleq1d k=ACD
13 2 eleq1d k=BCE
14 12 13 ralprg AVBWkABCDE
15 4 14 syl φkABCDE
16 3 15 mpbird φkABC
17 16 r19.21bi φkABC
18 7 9 11 17 fsumsplit φkABC=kAC+kBC
19 4 simpld φAV
20 3 simpld φD
21 1 sumsn AVDkAC=D
22 19 20 21 syl2anc φkAC=D
23 4 simprd φBW
24 3 simprd φE
25 2 sumsn BWEkBC=E
26 23 24 25 syl2anc φkBC=E
27 22 26 oveq12d φkAC+kBC=D+E
28 18 27 eqtrd φkABC=D+E