Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sumpr.1 | |
|
sumpr.2 | |
||
sumpr.3 | |
||
sumpr.4 | |
||
sumpr.5 | |
||
Assertion | sumpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumpr.1 | |
|
2 | sumpr.2 | |
|
3 | sumpr.3 | |
|
4 | sumpr.4 | |
|
5 | sumpr.5 | |
|
6 | disjsn2 | |
|
7 | 5 6 | syl | |
8 | df-pr | |
|
9 | 8 | a1i | |
10 | prfi | |
|
11 | 10 | a1i | |
12 | 1 | eleq1d | |
13 | 2 | eleq1d | |
14 | 12 13 | ralprg | |
15 | 4 14 | syl | |
16 | 3 15 | mpbird | |
17 | 16 | r19.21bi | |
18 | 7 9 11 17 | fsumsplit | |
19 | 4 | simpld | |
20 | 3 | simpld | |
21 | 1 | sumsn | |
22 | 19 20 21 | syl2anc | |
23 | 4 | simprd | |
24 | 3 | simprd | |
25 | 2 | sumsn | |
26 | 23 24 25 | syl2anc | |
27 | 22 26 | oveq12d | |
28 | 18 27 | eqtrd | |