Metamath Proof Explorer


Theorem sumspansn

Description: The sum of two vectors belong to the span of one of them iff the other vector also belongs. (Contributed by NM, 1-Nov-2005) (New usage is discouraged.)

Ref Expression
Assertion sumspansn ABA+BspanABspanA

Proof

Step Hyp Ref Expression
1 spansnsh AspanAS
2 1 adantr AA+BspanAspanAS
3 simpr AA+BspanAA+BspanA
4 spansnid AAspanA
5 4 adantr AA+BspanAAspanA
6 shsubcl spanASA+BspanAAspanAA+B-AspanA
7 2 3 5 6 syl3anc AA+BspanAA+B-AspanA
8 7 ex AA+BspanAA+B-AspanA
9 8 adantr ABA+BspanAA+B-AspanA
10 hvpncan2 ABA+B-A=B
11 10 eleq1d ABA+B-AspanABspanA
12 9 11 sylibd ABA+BspanABspanA
13 shaddcl spanASAspanABspanAA+BspanA
14 13 3expia spanASAspanABspanAA+BspanA
15 1 4 14 syl2anc ABspanAA+BspanA
16 15 adantr ABBspanAA+BspanA
17 12 16 impbid ABA+BspanABspanA