Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019) (Proof shortened by SN, 5-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppss.f | |
|
suppss.n | |
||
Assertion | suppss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppss.f | |
|
2 | suppss.n | |
|
3 | 1 | ffnd | |
4 | 3 | adantl | |
5 | simpll | |
|
6 | simplr | |
|
7 | elsuppfng | |
|
8 | 4 5 6 7 | syl3anc | |
9 | eldif | |
|
10 | 2 | adantll | |
11 | 9 10 | sylan2br | |
12 | 11 | expr | |
13 | 12 | necon1ad | |
14 | 13 | expimpd | |
15 | 8 14 | sylbid | |
16 | 15 | ssrdv | |
17 | 16 | ex | |
18 | supp0prc | |
|
19 | 0ss | |
|
20 | 18 19 | eqsstrdi | |
21 | 20 | a1d | |
22 | 17 21 | pm2.61i | |