Metamath Proof Explorer


Theorem suprub

Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004)

Ref Expression
Assertion suprub AAxyAyxBABsupA<

Proof

Step Hyp Ref Expression
1 simp1 AAxyAyxA
2 1 sselda AAxyAyxBAB
3 suprcl AAxyAyxsupA<
4 3 adantr AAxyAyxBAsupA<
5 ltso <Or
6 5 a1i AAxyAyx<Or
7 sup3 AAxyAyxxyA¬x<yyy<xzAy<z
8 6 7 supub AAxyAyxBA¬supA<<B
9 8 imp AAxyAyxBA¬supA<<B
10 2 4 9 nltled AAxyAyxBABsupA<