Metamath Proof Explorer


Theorem supxrbnd2

Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006)

Ref Expression
Assertion supxrbnd2 A*xyAyxsupA*<<+∞

Proof

Step Hyp Ref Expression
1 ralnex x¬yAyx¬xyAyx
2 ssel2 A*yAy*
3 rexr xx*
4 xrlenlt y*x*yx¬x<y
5 4 con2bid y*x*x<y¬yx
6 2 3 5 syl2an A*yAxx<y¬yx
7 6 an32s A*xyAx<y¬yx
8 7 rexbidva A*xyAx<yyA¬yx
9 rexnal yA¬yx¬yAyx
10 8 9 bitr2di A*x¬yAyxyAx<y
11 10 ralbidva A*x¬yAyxxyAx<y
12 1 11 bitr3id A*¬xyAyxxyAx<y
13 supxrunb2 A*xyAx<ysupA*<=+∞
14 supxrcl A*supA*<*
15 nltpnft supA*<*supA*<=+∞¬supA*<<+∞
16 14 15 syl A*supA*<=+∞¬supA*<<+∞
17 12 13 16 3bitrd A*¬xyAyx¬supA*<<+∞
18 17 con4bid A*xyAyxsupA*<<+∞