Metamath Proof Explorer


Theorem supxrss

Description: Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion supxrss ABB*supA*<supB*<

Proof

Step Hyp Ref Expression
1 simplr ABB*xAB*
2 simpl ABB*AB
3 2 sselda ABB*xAxB
4 supxrub B*xBxsupB*<
5 1 3 4 syl2anc ABB*xAxsupB*<
6 5 ralrimiva ABB*xAxsupB*<
7 sstr ABB*A*
8 supxrcl B*supB*<*
9 8 adantl ABB*supB*<*
10 supxrleub A*supB*<*supA*<supB*<xAxsupB*<
11 7 9 10 syl2anc ABB*supA*<supB*<xAxsupB*<
12 6 11 mpbird ABB*supA*<supB*<