Metamath Proof Explorer


Theorem swrds2m

Description: Extract two adjacent symbols from a word in reverse direction. (Contributed by AV, 11-May-2022)

Ref Expression
Assertion swrds2m WWordVN2WWsubstrN2N=⟨“WN2WN1”⟩

Proof

Step Hyp Ref Expression
1 elfzelz N2WN
2 1 zcnd N2WN
3 2cnd N2W2
4 2 3 npcand N2WN-2+2=N
5 4 eqcomd N2WN=N-2+2
6 5 opeq2d N2WN2N=N2N-2+2
7 6 oveq2d N2WWsubstrN2N=WsubstrN2N-2+2
8 7 adantl WWordVN2WWsubstrN2N=WsubstrN2N-2+2
9 simpl WWordVN2WWWordV
10 elfzuz N2WN2
11 uznn0sub N2N20
12 10 11 syl N2WN20
13 12 adantl WWordVN2WN20
14 1cnd N2W1
15 2 3 14 subsubd N2WN21=N-2+1
16 2m1e1 21=1
17 16 oveq2i N21=N1
18 15 17 eqtr3di N2WN-2+1=N1
19 2eluzge1 21
20 fzss1 212W1W
21 19 20 ax-mp 2W1W
22 21 sseli N2WN1W
23 fz1fzo0m1 N1WN10..^W
24 22 23 syl N2WN10..^W
25 18 24 eqeltrd N2WN-2+10..^W
26 25 adantl WWordVN2WN-2+10..^W
27 swrds2 WWordVN20N-2+10..^WWsubstrN2N-2+2=⟨“WN2WN-2+1”⟩
28 9 13 26 27 syl3anc WWordVN2WWsubstrN2N-2+2=⟨“WN2WN-2+1”⟩
29 eqidd WWordVN2WWN2=WN2
30 18 fveq2d N2WWN-2+1=WN1
31 30 adantl WWordVN2WWN-2+1=WN1
32 29 31 s2eqd WWordVN2W⟨“WN2WN-2+1”⟩=⟨“WN2WN1”⟩
33 8 28 32 3eqtrd WWordVN2WWsubstrN2N=⟨“WN2WN1”⟩