Metamath Proof Explorer


Theorem sxsiga

Description: A product sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017)

Ref Expression
Assertion sxsiga SransigAlgebraTransigAlgebraS×sTransigAlgebra

Proof

Step Hyp Ref Expression
1 eqid ranxS,yTx×y=ranxS,yTx×y
2 1 sxval SransigAlgebraTransigAlgebraS×sT=𝛔ranxS,yTx×y
3 1 txbasex SransigAlgebraTransigAlgebraranxS,yTx×yV
4 sigagensiga ranxS,yTx×yV𝛔ranxS,yTx×ysigAlgebraranxS,yTx×y
5 3 4 syl SransigAlgebraTransigAlgebra𝛔ranxS,yTx×ysigAlgebraranxS,yTx×y
6 2 5 eqeltrd SransigAlgebraTransigAlgebraS×sTsigAlgebraranxS,yTx×y
7 elrnsiga S×sTsigAlgebraranxS,yTx×yS×sTransigAlgebra
8 6 7 syl SransigAlgebraTransigAlgebraS×sTransigAlgebra