Metamath Proof Explorer


Theorem sxsigon

Description: A product sigma-algebra is a sigma-algebra on the product of the bases. (Contributed by Thierry Arnoux, 1-Jun-2017)

Ref Expression
Assertion sxsigon S ran sigAlgebra T ran sigAlgebra S × s T sigAlgebra S × T

Proof

Step Hyp Ref Expression
1 sxsiga S ran sigAlgebra T ran sigAlgebra S × s T ran sigAlgebra
2 eqid ran x S , y T x × y = ran x S , y T x × y
3 eqid S = S
4 eqid T = T
5 2 3 4 txuni2 S × T = ran x S , y T x × y
6 2 sxval S ran sigAlgebra T ran sigAlgebra S × s T = 𝛔 ran x S , y T x × y
7 6 unieqd S ran sigAlgebra T ran sigAlgebra S × s T = 𝛔 ran x S , y T x × y
8 mpoexga S ran sigAlgebra T ran sigAlgebra x S , y T x × y V
9 rnexg x S , y T x × y V ran x S , y T x × y V
10 unisg ran x S , y T x × y V 𝛔 ran x S , y T x × y = ran x S , y T x × y
11 8 9 10 3syl S ran sigAlgebra T ran sigAlgebra 𝛔 ran x S , y T x × y = ran x S , y T x × y
12 7 11 eqtrd S ran sigAlgebra T ran sigAlgebra S × s T = ran x S , y T x × y
13 5 12 eqtr4id S ran sigAlgebra T ran sigAlgebra S × T = S × s T
14 issgon S × s T sigAlgebra S × T S × s T ran sigAlgebra S × T = S × s T
15 1 13 14 sylanbrc S ran sigAlgebra T ran sigAlgebra S × s T sigAlgebra S × T