Metamath Proof Explorer


Theorem sxsigon

Description: A product sigma-algebra is a sigma-algebra on the product of the bases. (Contributed by Thierry Arnoux, 1-Jun-2017)

Ref Expression
Assertion sxsigon SransigAlgebraTransigAlgebraS×sTsigAlgebraS×T

Proof

Step Hyp Ref Expression
1 sxsiga SransigAlgebraTransigAlgebraS×sTransigAlgebra
2 eqid ranxS,yTx×y=ranxS,yTx×y
3 eqid S=S
4 eqid T=T
5 2 3 4 txuni2 S×T=ranxS,yTx×y
6 2 sxval SransigAlgebraTransigAlgebraS×sT=𝛔ranxS,yTx×y
7 6 unieqd SransigAlgebraTransigAlgebraS×sT=𝛔ranxS,yTx×y
8 mpoexga SransigAlgebraTransigAlgebraxS,yTx×yV
9 rnexg xS,yTx×yVranxS,yTx×yV
10 unisg ranxS,yTx×yV𝛔ranxS,yTx×y=ranxS,yTx×y
11 8 9 10 3syl SransigAlgebraTransigAlgebra𝛔ranxS,yTx×y=ranxS,yTx×y
12 7 11 eqtrd SransigAlgebraTransigAlgebraS×sT=ranxS,yTx×y
13 5 12 eqtr4id SransigAlgebraTransigAlgebraS×T=S×sT
14 issgon S×sTsigAlgebraS×TS×sTransigAlgebraS×T=S×sT
15 1 13 14 sylanbrc SransigAlgebraTransigAlgebraS×sTsigAlgebraS×T