Metamath Proof Explorer


Theorem t1connperf

Description: A connected T_1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis t1connperf.1 X=J
Assertion t1connperf JFreJConn¬X1𝑜JPerf

Proof

Step Hyp Ref Expression
1 t1connperf.1 X=J
2 simplr JFreJConnxXxJJConn
3 simprr JFreJConnxXxJxJ
4 vex xV
5 4 snnz x
6 5 a1i JFreJConnxXxJx
7 1 t1sncld JFrexXxClsdJ
8 7 ad2ant2r JFreJConnxXxJxClsdJ
9 1 2 3 6 8 connclo JFreJConnxXxJx=X
10 4 ensn1 x1𝑜
11 9 10 eqbrtrrdi JFreJConnxXxJX1𝑜
12 11 rexlimdvaa JFreJConnxXxJX1𝑜
13 12 con3d JFreJConn¬X1𝑜¬xXxJ
14 ralnex xX¬xJ¬xXxJ
15 13 14 syl6ibr JFreJConn¬X1𝑜xX¬xJ
16 t1top JFreJTop
17 16 adantr JFreJConnJTop
18 1 isperf3 JPerfJTopxX¬xJ
19 18 baib JTopJPerfxX¬xJ
20 17 19 syl JFreJConnJPerfxX¬xJ
21 15 20 sylibrd JFreJConn¬X1𝑜JPerf
22 21 3impia JFreJConn¬X1𝑜JPerf