Description: Express the tangent function directly in terms of exp . (Contributed by Mario Carneiro, 25-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tanval2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tanval | |
|
2 | 2cn | |
|
3 | ax-icn | |
|
4 | 2 3 | mulcomi | |
5 | 4 | oveq2i | |
6 | sinval | |
|
7 | 6 | adantr | |
8 | simpl | |
|
9 | mulcl | |
|
10 | 3 8 9 | sylancr | |
11 | efcl | |
|
12 | 10 11 | syl | |
13 | negicn | |
|
14 | mulcl | |
|
15 | 13 8 14 | sylancr | |
16 | efcl | |
|
17 | 15 16 | syl | |
18 | 12 17 | subcld | |
19 | 3 | a1i | |
20 | 2 | a1i | |
21 | ine0 | |
|
22 | 21 | a1i | |
23 | 2ne0 | |
|
24 | 23 | a1i | |
25 | 18 19 20 22 24 | divdiv1d | |
26 | 5 7 25 | 3eqtr4a | |
27 | cosval | |
|
28 | 27 | adantr | |
29 | 26 28 | oveq12d | |
30 | 1 29 | eqtrd | |
31 | 18 19 22 | divcld | |
32 | 12 17 | addcld | |
33 | simpr | |
|
34 | 28 33 | eqnetrrd | |
35 | 32 20 24 | diveq0ad | |
36 | 35 | necon3bid | |
37 | 34 36 | mpbid | |
38 | 31 32 20 37 24 | divcan7d | |
39 | 18 19 32 22 37 | divdiv1d | |
40 | 30 38 39 | 3eqtrd | |