Metamath Proof Explorer


Theorem tanval2

Description: Express the tangent function directly in terms of exp . (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion tanval2 AcosA0tanA=eiAeiAieiA+eiA

Proof

Step Hyp Ref Expression
1 tanval AcosA0tanA=sinAcosA
2 2cn 2
3 ax-icn i
4 2 3 mulcomi 2i=i2
5 4 oveq2i eiAeiA2i=eiAeiAi2
6 sinval AsinA=eiAeiA2i
7 6 adantr AcosA0sinA=eiAeiA2i
8 simpl AcosA0A
9 mulcl iAiA
10 3 8 9 sylancr AcosA0iA
11 efcl iAeiA
12 10 11 syl AcosA0eiA
13 negicn i
14 mulcl iAiA
15 13 8 14 sylancr AcosA0iA
16 efcl iAeiA
17 15 16 syl AcosA0eiA
18 12 17 subcld AcosA0eiAeiA
19 3 a1i AcosA0i
20 2 a1i AcosA02
21 ine0 i0
22 21 a1i AcosA0i0
23 2ne0 20
24 23 a1i AcosA020
25 18 19 20 22 24 divdiv1d AcosA0eiAeiAi2=eiAeiAi2
26 5 7 25 3eqtr4a AcosA0sinA=eiAeiAi2
27 cosval AcosA=eiA+eiA2
28 27 adantr AcosA0cosA=eiA+eiA2
29 26 28 oveq12d AcosA0sinAcosA=eiAeiAi2eiA+eiA2
30 1 29 eqtrd AcosA0tanA=eiAeiAi2eiA+eiA2
31 18 19 22 divcld AcosA0eiAeiAi
32 12 17 addcld AcosA0eiA+eiA
33 simpr AcosA0cosA0
34 28 33 eqnetrrd AcosA0eiA+eiA20
35 32 20 24 diveq0ad AcosA0eiA+eiA2=0eiA+eiA=0
36 35 necon3bid AcosA0eiA+eiA20eiA+eiA0
37 34 36 mpbid AcosA0eiA+eiA0
38 31 32 20 37 24 divcan7d AcosA0eiAeiAi2eiA+eiA2=eiAeiAieiA+eiA
39 18 19 32 22 37 divdiv1d AcosA0eiAeiAieiA+eiA=eiAeiAieiA+eiA
40 30 38 39 3eqtrd AcosA0tanA=eiAeiAieiA+eiA