Metamath Proof Explorer


Theorem tdeglem1

Description: Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015) (Proof shortened by AV, 27-Jul-2019) Remove sethood antecedent. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses tdeglem.a A=m0I|m-1Fin
tdeglem.h H=hAfldh
Assertion tdeglem1 H:A0

Proof

Step Hyp Ref Expression
1 tdeglem.a A=m0I|m-1Fin
2 tdeglem.h H=hAfldh
3 cnfld0 0=0fld
4 cnring fldRing
5 ringcmn fldRingfldCMnd
6 4 5 mp1i hAfldCMnd
7 id hAhA
8 1 psrbagf hAh:I0
9 8 ffnd hAhFnI
10 7 9 fndmexd hAIV
11 nn0subm 0SubMndfld
12 11 a1i hA0SubMndfld
13 1 psrbagfsupp hAfinSupp0h
14 3 6 10 12 8 13 gsumsubmcl hAfldh0
15 2 14 fmpti H:A0