Metamath Proof Explorer


Theorem tendodi1

Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013)

Ref Expression
Hypotheses tendopl.h H = LHyp K
tendopl.t T = LTrn K W
tendopl.e E = TEndo K W
tendopl.p P = s E , t E f T s f t f
Assertion tendodi1 K HL W H S E U E V E S U P V = S U P S V

Proof

Step Hyp Ref Expression
1 tendopl.h H = LHyp K
2 tendopl.t T = LTrn K W
3 tendopl.e E = TEndo K W
4 tendopl.p P = s E , t E f T s f t f
5 simpl K HL W H S E U E V E K HL W H
6 simpr1 K HL W H S E U E V E S E
7 simpr2 K HL W H S E U E V E U E
8 simpr3 K HL W H S E U E V E V E
9 1 2 3 4 tendoplcl K HL W H U E V E U P V E
10 5 7 8 9 syl3anc K HL W H S E U E V E U P V E
11 1 3 tendococl K HL W H S E U P V E S U P V E
12 5 6 10 11 syl3anc K HL W H S E U E V E S U P V E
13 1 3 tendococl K HL W H S E U E S U E
14 5 6 7 13 syl3anc K HL W H S E U E V E S U E
15 1 3 tendococl K HL W H S E V E S V E
16 5 6 8 15 syl3anc K HL W H S E U E V E S V E
17 1 2 3 4 tendoplcl K HL W H S U E S V E S U P S V E
18 5 14 16 17 syl3anc K HL W H S E U E V E S U P S V E
19 simplll K HL W H S E U E V E g T K HL
20 simpllr K HL W H S E U E V E g T W H
21 simplr1 K HL W H S E U E V E g T S E
22 simpll K HL W H S E U E V E g T K HL W H
23 simplr2 K HL W H S E U E V E g T U E
24 simpr K HL W H S E U E V E g T g T
25 1 2 3 tendocl K HL W H U E g T U g T
26 22 23 24 25 syl3anc K HL W H S E U E V E g T U g T
27 simplr3 K HL W H S E U E V E g T V E
28 1 2 3 tendocl K HL W H V E g T V g T
29 22 27 24 28 syl3anc K HL W H S E U E V E g T V g T
30 1 2 3 tendovalco K HL W H S E U g T V g T S U g V g = S U g S V g
31 19 20 21 26 29 30 syl32anc K HL W H S E U E V E g T S U g V g = S U g S V g
32 4 2 tendopl2 U E V E g T U P V g = U g V g
33 23 27 24 32 syl3anc K HL W H S E U E V E g T U P V g = U g V g
34 33 fveq2d K HL W H S E U E V E g T S U P V g = S U g V g
35 1 2 3 tendocoval K HL W H S E U E g T S U g = S U g
36 19 20 21 23 24 35 syl221anc K HL W H S E U E V E g T S U g = S U g
37 1 2 3 tendocoval K HL W H S E V E g T S V g = S V g
38 19 20 21 27 24 37 syl221anc K HL W H S E U E V E g T S V g = S V g
39 36 38 coeq12d K HL W H S E U E V E g T S U g S V g = S U g S V g
40 31 34 39 3eqtr4rd K HL W H S E U E V E g T S U g S V g = S U P V g
41 22 21 23 13 syl3anc K HL W H S E U E V E g T S U E
42 22 21 27 15 syl3anc K HL W H S E U E V E g T S V E
43 4 2 tendopl2 S U E S V E g T S U P S V g = S U g S V g
44 41 42 24 43 syl3anc K HL W H S E U E V E g T S U P S V g = S U g S V g
45 22 23 27 9 syl3anc K HL W H S E U E V E g T U P V E
46 1 2 3 tendocoval K HL W H S E U P V E g T S U P V g = S U P V g
47 22 21 45 24 46 syl121anc K HL W H S E U E V E g T S U P V g = S U P V g
48 40 44 47 3eqtr4rd K HL W H S E U E V E g T S U P V g = S U P S V g
49 48 ralrimiva K HL W H S E U E V E g T S U P V g = S U P S V g
50 1 2 3 tendoeq1 K HL W H S U P V E S U P S V E g T S U P V g = S U P S V g S U P V = S U P S V
51 5 12 18 49 50 syl121anc K HL W H S E U E V E S U P V = S U P S V