Metamath Proof Explorer


Theorem tendodi1

Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013)

Ref Expression
Hypotheses tendopl.h H=LHypK
tendopl.t T=LTrnKW
tendopl.e E=TEndoKW
tendopl.p P=sE,tEfTsftf
Assertion tendodi1 KHLWHSEUEVESUPV=SUPSV

Proof

Step Hyp Ref Expression
1 tendopl.h H=LHypK
2 tendopl.t T=LTrnKW
3 tendopl.e E=TEndoKW
4 tendopl.p P=sE,tEfTsftf
5 simpl KHLWHSEUEVEKHLWH
6 simpr1 KHLWHSEUEVESE
7 simpr2 KHLWHSEUEVEUE
8 simpr3 KHLWHSEUEVEVE
9 1 2 3 4 tendoplcl KHLWHUEVEUPVE
10 5 7 8 9 syl3anc KHLWHSEUEVEUPVE
11 1 3 tendococl KHLWHSEUPVESUPVE
12 5 6 10 11 syl3anc KHLWHSEUEVESUPVE
13 1 3 tendococl KHLWHSEUESUE
14 5 6 7 13 syl3anc KHLWHSEUEVESUE
15 1 3 tendococl KHLWHSEVESVE
16 5 6 8 15 syl3anc KHLWHSEUEVESVE
17 1 2 3 4 tendoplcl KHLWHSUESVESUPSVE
18 5 14 16 17 syl3anc KHLWHSEUEVESUPSVE
19 simplll KHLWHSEUEVEgTKHL
20 simpllr KHLWHSEUEVEgTWH
21 simplr1 KHLWHSEUEVEgTSE
22 simpll KHLWHSEUEVEgTKHLWH
23 simplr2 KHLWHSEUEVEgTUE
24 simpr KHLWHSEUEVEgTgT
25 1 2 3 tendocl KHLWHUEgTUgT
26 22 23 24 25 syl3anc KHLWHSEUEVEgTUgT
27 simplr3 KHLWHSEUEVEgTVE
28 1 2 3 tendocl KHLWHVEgTVgT
29 22 27 24 28 syl3anc KHLWHSEUEVEgTVgT
30 1 2 3 tendovalco KHLWHSEUgTVgTSUgVg=SUgSVg
31 19 20 21 26 29 30 syl32anc KHLWHSEUEVEgTSUgVg=SUgSVg
32 4 2 tendopl2 UEVEgTUPVg=UgVg
33 23 27 24 32 syl3anc KHLWHSEUEVEgTUPVg=UgVg
34 33 fveq2d KHLWHSEUEVEgTSUPVg=SUgVg
35 1 2 3 tendocoval KHLWHSEUEgTSUg=SUg
36 19 20 21 23 24 35 syl221anc KHLWHSEUEVEgTSUg=SUg
37 1 2 3 tendocoval KHLWHSEVEgTSVg=SVg
38 19 20 21 27 24 37 syl221anc KHLWHSEUEVEgTSVg=SVg
39 36 38 coeq12d KHLWHSEUEVEgTSUgSVg=SUgSVg
40 31 34 39 3eqtr4rd KHLWHSEUEVEgTSUgSVg=SUPVg
41 22 21 23 13 syl3anc KHLWHSEUEVEgTSUE
42 22 21 27 15 syl3anc KHLWHSEUEVEgTSVE
43 4 2 tendopl2 SUESVEgTSUPSVg=SUgSVg
44 41 42 24 43 syl3anc KHLWHSEUEVEgTSUPSVg=SUgSVg
45 22 23 27 9 syl3anc KHLWHSEUEVEgTUPVE
46 1 2 3 tendocoval KHLWHSEUPVEgTSUPVg=SUPVg
47 22 21 45 24 46 syl121anc KHLWHSEUEVEgTSUPVg=SUPVg
48 40 44 47 3eqtr4rd KHLWHSEUEVEgTSUPVg=SUPSVg
49 48 ralrimiva KHLWHSEUEVEgTSUPVg=SUPSVg
50 1 2 3 tendoeq1 KHLWHSUPVESUPSVEgTSUPVg=SUPSVgSUPV=SUPSV
51 5 12 18 49 50 syl121anc KHLWHSEUEVESUPV=SUPSV