Metamath Proof Explorer


Theorem tendodi2

Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013)

Ref Expression
Hypotheses tendopl.h H = LHyp K
tendopl.t T = LTrn K W
tendopl.e E = TEndo K W
tendopl.p P = s E , t E f T s f t f
Assertion tendodi2 K HL W H S E U E V E S P U V = S V P U V

Proof

Step Hyp Ref Expression
1 tendopl.h H = LHyp K
2 tendopl.t T = LTrn K W
3 tendopl.e E = TEndo K W
4 tendopl.p P = s E , t E f T s f t f
5 simpl K HL W H S E U E V E K HL W H
6 simpr1 K HL W H S E U E V E S E
7 simpr2 K HL W H S E U E V E U E
8 1 2 3 4 tendoplcl K HL W H S E U E S P U E
9 5 6 7 8 syl3anc K HL W H S E U E V E S P U E
10 simpr3 K HL W H S E U E V E V E
11 1 3 tendococl K HL W H S P U E V E S P U V E
12 5 9 10 11 syl3anc K HL W H S E U E V E S P U V E
13 1 3 tendococl K HL W H S E V E S V E
14 5 6 10 13 syl3anc K HL W H S E U E V E S V E
15 1 3 tendococl K HL W H U E V E U V E
16 5 7 10 15 syl3anc K HL W H S E U E V E U V E
17 1 2 3 4 tendoplcl K HL W H S V E U V E S V P U V E
18 5 14 16 17 syl3anc K HL W H S E U E V E S V P U V E
19 simpll K HL W H S E U E V E g T K HL W H
20 simplr1 K HL W H S E U E V E g T S E
21 simplr2 K HL W H S E U E V E g T U E
22 19 20 21 8 syl3anc K HL W H S E U E V E g T S P U E
23 simplr3 K HL W H S E U E V E g T V E
24 simpr K HL W H S E U E V E g T g T
25 1 2 3 tendocoval K HL W H S P U E V E g T S P U V g = S P U V g
26 19 22 23 24 25 syl121anc K HL W H S E U E V E g T S P U V g = S P U V g
27 simplll K HL W H S E U E V E g T K HL
28 simpllr K HL W H S E U E V E g T W H
29 1 2 3 tendocoval K HL W H S E V E g T S V g = S V g
30 27 28 20 23 24 29 syl221anc K HL W H S E U E V E g T S V g = S V g
31 1 2 3 tendocoval K HL W H U E V E g T U V g = U V g
32 27 28 21 23 24 31 syl221anc K HL W H S E U E V E g T U V g = U V g
33 30 32 coeq12d K HL W H S E U E V E g T S V g U V g = S V g U V g
34 19 20 23 13 syl3anc K HL W H S E U E V E g T S V E
35 19 21 23 15 syl3anc K HL W H S E U E V E g T U V E
36 4 2 tendopl2 S V E U V E g T S V P U V g = S V g U V g
37 34 35 24 36 syl3anc K HL W H S E U E V E g T S V P U V g = S V g U V g
38 1 2 3 tendocl K HL W H V E g T V g T
39 19 23 24 38 syl3anc K HL W H S E U E V E g T V g T
40 4 2 tendopl2 S E U E V g T S P U V g = S V g U V g
41 20 21 39 40 syl3anc K HL W H S E U E V E g T S P U V g = S V g U V g
42 33 37 41 3eqtr4rd K HL W H S E U E V E g T S P U V g = S V P U V g
43 26 42 eqtrd K HL W H S E U E V E g T S P U V g = S V P U V g
44 43 ralrimiva K HL W H S E U E V E g T S P U V g = S V P U V g
45 1 2 3 tendoeq1 K HL W H S P U V E S V P U V E g T S P U V g = S V P U V g S P U V = S V P U V
46 5 12 18 44 45 syl121anc K HL W H S E U E V E S P U V = S V P U V