Metamath Proof Explorer


Theorem tendodi2

Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013)

Ref Expression
Hypotheses tendopl.h H=LHypK
tendopl.t T=LTrnKW
tendopl.e E=TEndoKW
tendopl.p P=sE,tEfTsftf
Assertion tendodi2 KHLWHSEUEVESPUV=SVPUV

Proof

Step Hyp Ref Expression
1 tendopl.h H=LHypK
2 tendopl.t T=LTrnKW
3 tendopl.e E=TEndoKW
4 tendopl.p P=sE,tEfTsftf
5 simpl KHLWHSEUEVEKHLWH
6 simpr1 KHLWHSEUEVESE
7 simpr2 KHLWHSEUEVEUE
8 1 2 3 4 tendoplcl KHLWHSEUESPUE
9 5 6 7 8 syl3anc KHLWHSEUEVESPUE
10 simpr3 KHLWHSEUEVEVE
11 1 3 tendococl KHLWHSPUEVESPUVE
12 5 9 10 11 syl3anc KHLWHSEUEVESPUVE
13 1 3 tendococl KHLWHSEVESVE
14 5 6 10 13 syl3anc KHLWHSEUEVESVE
15 1 3 tendococl KHLWHUEVEUVE
16 5 7 10 15 syl3anc KHLWHSEUEVEUVE
17 1 2 3 4 tendoplcl KHLWHSVEUVESVPUVE
18 5 14 16 17 syl3anc KHLWHSEUEVESVPUVE
19 simpll KHLWHSEUEVEgTKHLWH
20 simplr1 KHLWHSEUEVEgTSE
21 simplr2 KHLWHSEUEVEgTUE
22 19 20 21 8 syl3anc KHLWHSEUEVEgTSPUE
23 simplr3 KHLWHSEUEVEgTVE
24 simpr KHLWHSEUEVEgTgT
25 1 2 3 tendocoval KHLWHSPUEVEgTSPUVg=SPUVg
26 19 22 23 24 25 syl121anc KHLWHSEUEVEgTSPUVg=SPUVg
27 simplll KHLWHSEUEVEgTKHL
28 simpllr KHLWHSEUEVEgTWH
29 1 2 3 tendocoval KHLWHSEVEgTSVg=SVg
30 27 28 20 23 24 29 syl221anc KHLWHSEUEVEgTSVg=SVg
31 1 2 3 tendocoval KHLWHUEVEgTUVg=UVg
32 27 28 21 23 24 31 syl221anc KHLWHSEUEVEgTUVg=UVg
33 30 32 coeq12d KHLWHSEUEVEgTSVgUVg=SVgUVg
34 19 20 23 13 syl3anc KHLWHSEUEVEgTSVE
35 19 21 23 15 syl3anc KHLWHSEUEVEgTUVE
36 4 2 tendopl2 SVEUVEgTSVPUVg=SVgUVg
37 34 35 24 36 syl3anc KHLWHSEUEVEgTSVPUVg=SVgUVg
38 1 2 3 tendocl KHLWHVEgTVgT
39 19 23 24 38 syl3anc KHLWHSEUEVEgTVgT
40 4 2 tendopl2 SEUEVgTSPUVg=SVgUVg
41 20 21 39 40 syl3anc KHLWHSEUEVEgTSPUVg=SVgUVg
42 33 37 41 3eqtr4rd KHLWHSEUEVEgTSPUVg=SVPUVg
43 26 42 eqtrd KHLWHSEUEVEgTSPUVg=SVPUVg
44 43 ralrimiva KHLWHSEUEVEgTSPUVg=SVPUVg
45 1 2 3 tendoeq1 KHLWHSPUVESVPUVEgTSPUVg=SVPUVgSPUV=SVPUV
46 5 12 18 44 45 syl121anc KHLWHSEUEVESPUV=SVPUV