Metamath Proof Explorer


Theorem tendoplcbv

Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypothesis tendoplcbv.p P = s E , t E f T s f t f
Assertion tendoplcbv P = u E , v E g T u g v g

Proof

Step Hyp Ref Expression
1 tendoplcbv.p P = s E , t E f T s f t f
2 fveq1 s = u s f = u f
3 2 coeq1d s = u s f t f = u f t f
4 3 mpteq2dv s = u f T s f t f = f T u f t f
5 fveq1 t = v t f = v f
6 5 coeq2d t = v u f t f = u f v f
7 6 mpteq2dv t = v f T u f t f = f T u f v f
8 fveq2 f = g u f = u g
9 fveq2 f = g v f = v g
10 8 9 coeq12d f = g u f v f = u g v g
11 10 cbvmptv f T u f v f = g T u g v g
12 7 11 eqtrdi t = v f T u f t f = g T u g v g
13 4 12 cbvmpov s E , t E f T s f t f = u E , v E g T u g v g
14 1 13 eqtri P = u E , v E g T u g v g