Metamath Proof Explorer


Theorem tfr2b

Description: Without assuming ax-rep , we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypothesis tfr.1 F=recsG
Assertion tfr2b OrdAAdomFFAV

Proof

Step Hyp Ref Expression
1 tfr.1 F=recsG
2 ordeleqon OrdAAOnA=On
3 eqid f|xOnfFnxyxfy=Gfy=f|xOnfFnxyxfy=Gfy
4 3 tfrlem15 AOnAdomrecsGrecsGAV
5 1 dmeqi domF=domrecsG
6 5 eleq2i AdomFAdomrecsG
7 1 reseq1i FA=recsGA
8 7 eleq1i FAVrecsGAV
9 4 6 8 3bitr4g AOnAdomFFAV
10 onprc ¬OnV
11 elex OndomFOnV
12 10 11 mto ¬OndomF
13 eleq1 A=OnAdomFOndomF
14 12 13 mtbiri A=On¬AdomF
15 3 tfrlem13 ¬recsGV
16 1 15 eqneltri ¬FV
17 reseq2 A=OnFA=FOn
18 1 tfr1a FunFLimdomF
19 18 simpli FunF
20 funrel FunFRelF
21 19 20 ax-mp RelF
22 18 simpri LimdomF
23 limord LimdomFOrddomF
24 ordsson OrddomFdomFOn
25 22 23 24 mp2b domFOn
26 relssres RelFdomFOnFOn=F
27 21 25 26 mp2an FOn=F
28 17 27 eqtrdi A=OnFA=F
29 28 eleq1d A=OnFAVFV
30 16 29 mtbiri A=On¬FAV
31 14 30 2falsed A=OnAdomFFAV
32 9 31 jaoi AOnA=OnAdomFFAV
33 2 32 sylbi OrdAAdomFFAV