Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of TakeutiZaring p. 47. Finally, we show that F is unique. We do this by showing that any class B with the same properties of F that we showed in parts 1 and 2 is identical to F . (Contributed by NM, 18-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tfr.1 | |
|
Assertion | tfr3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr.1 | |
|
2 | nfv | |
|
3 | nfra1 | |
|
4 | 2 3 | nfan | |
5 | nfv | |
|
6 | 4 5 | nfim | |
7 | fveq2 | |
|
8 | fveq2 | |
|
9 | 7 8 | eqeq12d | |
10 | 9 | imbi2d | |
11 | r19.21v | |
|
12 | rsp | |
|
13 | onss | |
|
14 | 1 | tfr1 | |
15 | fvreseq | |
|
16 | 14 15 | mpanl2 | |
17 | fveq2 | |
|
18 | 16 17 | syl6bir | |
19 | 13 18 | sylan2 | |
20 | 19 | ancoms | |
21 | 20 | imp | |
22 | 21 | adantr | |
23 | 1 | tfr2 | |
24 | 23 | jctr | |
25 | jcab | |
|
26 | 24 25 | sylibr | |
27 | eqeq12 | |
|
28 | 26 27 | syl6 | |
29 | 28 | imp | |
30 | 29 | adantl | |
31 | 22 30 | mpbird | |
32 | 31 | exp43 | |
33 | 32 | com4t | |
34 | 33 | exp4a | |
35 | 34 | pm2.43d | |
36 | 12 35 | syl | |
37 | 36 | com3l | |
38 | 37 | impd | |
39 | 38 | a2d | |
40 | 11 39 | biimtrid | |
41 | 6 10 40 | tfis2f | |
42 | 41 | com12 | |
43 | 4 42 | ralrimi | |
44 | eqfnfv | |
|
45 | 14 44 | mpan2 | |
46 | 45 | biimpar | |
47 | 43 46 | syldan | |