Metamath Proof Explorer


Theorem tfr3

Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of TakeutiZaring p. 47. Finally, we show that F is unique. We do this by showing that any class B with the same properties of F that we showed in parts 1 and 2 is identical to F . (Contributed by NM, 18-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypothesis tfr.1 F=recsG
Assertion tfr3 BFnOnxOnBx=GBxB=F

Proof

Step Hyp Ref Expression
1 tfr.1 F=recsG
2 nfv xBFnOn
3 nfra1 xxOnBx=GBx
4 2 3 nfan xBFnOnxOnBx=GBx
5 nfv xBy=Fy
6 4 5 nfim xBFnOnxOnBx=GBxBy=Fy
7 fveq2 x=yBx=By
8 fveq2 x=yFx=Fy
9 7 8 eqeq12d x=yBx=FxBy=Fy
10 9 imbi2d x=yBFnOnxOnBx=GBxBx=FxBFnOnxOnBx=GBxBy=Fy
11 r19.21v yxBFnOnxOnBx=GBxBy=FyBFnOnxOnBx=GBxyxBy=Fy
12 rsp xOnBx=GBxxOnBx=GBx
13 onss xOnxOn
14 1 tfr1 FFnOn
15 fvreseq BFnOnFFnOnxOnBx=FxyxBy=Fy
16 14 15 mpanl2 BFnOnxOnBx=FxyxBy=Fy
17 fveq2 Bx=FxGBx=GFx
18 16 17 syl6bir BFnOnxOnyxBy=FyGBx=GFx
19 13 18 sylan2 BFnOnxOnyxBy=FyGBx=GFx
20 19 ancoms xOnBFnOnyxBy=FyGBx=GFx
21 20 imp xOnBFnOnyxBy=FyGBx=GFx
22 21 adantr xOnBFnOnyxBy=FyxOnBx=GBxxOnGBx=GFx
23 1 tfr2 xOnFx=GFx
24 23 jctr xOnBx=GBxxOnBx=GBxxOnFx=GFx
25 jcab xOnBx=GBxFx=GFxxOnBx=GBxxOnFx=GFx
26 24 25 sylibr xOnBx=GBxxOnBx=GBxFx=GFx
27 eqeq12 Bx=GBxFx=GFxBx=FxGBx=GFx
28 26 27 syl6 xOnBx=GBxxOnBx=FxGBx=GFx
29 28 imp xOnBx=GBxxOnBx=FxGBx=GFx
30 29 adantl xOnBFnOnyxBy=FyxOnBx=GBxxOnBx=FxGBx=GFx
31 22 30 mpbird xOnBFnOnyxBy=FyxOnBx=GBxxOnBx=Fx
32 31 exp43 xOnBFnOnyxBy=FyxOnBx=GBxxOnBx=Fx
33 32 com4t xOnBx=GBxxOnxOnBFnOnyxBy=FyBx=Fx
34 33 exp4a xOnBx=GBxxOnxOnBFnOnyxBy=FyBx=Fx
35 34 pm2.43d xOnBx=GBxxOnBFnOnyxBy=FyBx=Fx
36 12 35 syl xOnBx=GBxxOnBFnOnyxBy=FyBx=Fx
37 36 com3l xOnBFnOnxOnBx=GBxyxBy=FyBx=Fx
38 37 impd xOnBFnOnxOnBx=GBxyxBy=FyBx=Fx
39 38 a2d xOnBFnOnxOnBx=GBxyxBy=FyBFnOnxOnBx=GBxBx=Fx
40 11 39 biimtrid xOnyxBFnOnxOnBx=GBxBy=FyBFnOnxOnBx=GBxBx=Fx
41 6 10 40 tfis2f xOnBFnOnxOnBx=GBxBx=Fx
42 41 com12 BFnOnxOnBx=GBxxOnBx=Fx
43 4 42 ralrimi BFnOnxOnBx=GBxxOnBx=Fx
44 eqfnfv BFnOnFFnOnB=FxOnBx=Fx
45 14 44 mpan2 BFnOnB=FxOnBx=Fx
46 45 biimpar BFnOnxOnBx=FxB=F
47 43 46 syldan BFnOnxOnBx=GBxB=F