Metamath Proof Explorer


Theorem tgcnp

Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses tgcn.1 φJTopOnX
tgcn.3 φK=topGenB
tgcn.4 φKTopOnY
tgcnp.5 φPX
Assertion tgcnp φFJCnPKPF:XYyBFPyxJPxFxy

Proof

Step Hyp Ref Expression
1 tgcn.1 φJTopOnX
2 tgcn.3 φK=topGenB
3 tgcn.4 φKTopOnY
4 tgcnp.5 φPX
5 iscnp JTopOnXKTopOnYPXFJCnPKPF:XYyKFPyxJPxFxy
6 1 3 4 5 syl3anc φFJCnPKPF:XYyKFPyxJPxFxy
7 topontop KTopOnYKTop
8 3 7 syl φKTop
9 2 8 eqeltrrd φtopGenBTop
10 tgclb BTopBasestopGenBTop
11 9 10 sylibr φBTopBases
12 bastg BTopBasesBtopGenB
13 11 12 syl φBtopGenB
14 13 2 sseqtrrd φBK
15 ssralv BKyKFPyxJPxFxyyBFPyxJPxFxy
16 14 15 syl φyKFPyxJPxFxyyBFPyxJPxFxy
17 16 anim2d φF:XYyKFPyxJPxFxyF:XYyBFPyxJPxFxy
18 6 17 sylbid φFJCnPKPF:XYyBFPyxJPxFxy
19 2 eleq2d φzKztopGenB
20 19 biimpa φzKztopGenB
21 tg2 ztopGenBFPzyBFPyyz
22 r19.29 yBFPyxJPxFxyyBFPyyzyBFPyxJPxFxyFPyyz
23 sstr FxyyzFxz
24 23 expcom yzFxyFxz
25 24 anim2d yzPxFxyPxFxz
26 25 reximdv yzxJPxFxyxJPxFxz
27 26 com12 xJPxFxyyzxJPxFxz
28 27 imim2i FPyxJPxFxyFPyyzxJPxFxz
29 28 imp32 FPyxJPxFxyFPyyzxJPxFxz
30 29 rexlimivw yBFPyxJPxFxyFPyyzxJPxFxz
31 22 30 syl yBFPyxJPxFxyyBFPyyzxJPxFxz
32 31 expcom yBFPyyzyBFPyxJPxFxyxJPxFxz
33 21 32 syl ztopGenBFPzyBFPyxJPxFxyxJPxFxz
34 33 ex ztopGenBFPzyBFPyxJPxFxyxJPxFxz
35 34 com23 ztopGenByBFPyxJPxFxyFPzxJPxFxz
36 20 35 syl φzKyBFPyxJPxFxyFPzxJPxFxz
37 36 ralrimdva φyBFPyxJPxFxyzKFPzxJPxFxz
38 37 anim2d φF:XYyBFPyxJPxFxyF:XYzKFPzxJPxFxz
39 iscnp JTopOnXKTopOnYPXFJCnPKPF:XYzKFPzxJPxFxz
40 1 3 4 39 syl3anc φFJCnPKPF:XYzKFPzxJPxFxz
41 38 40 sylibrd φF:XYyBFPyxJPxFxyFJCnPKP
42 18 41 impbid φFJCnPKPF:XYyBFPyxJPxFxy