Metamath Proof Explorer


Theorem tgjustf

Description: Given any function F , equality of the image by F is an equivalence relation. (Contributed by Thierry Arnoux, 25-Jan-2023)

Ref Expression
Assertion tgjustf AVrrErAxAyAxryFx=Fy

Proof

Step Hyp Ref Expression
1 relopabv Reluv|uAvAFu=Fv
2 ancom xAyAyAxA
3 eqcom Fx=FyFy=Fx
4 2 3 anbi12i xAyAFx=FyyAxAFy=Fx
5 simpl u=xv=yu=x
6 5 fveq2d u=xv=yFu=Fx
7 simpr u=xv=yv=y
8 7 fveq2d u=xv=yFv=Fy
9 6 8 eqeq12d u=xv=yFu=FvFx=Fy
10 eqid uv|uAvAFu=Fv=uv|uAvAFu=Fv
11 9 10 brab2a xuv|uAvAFu=FvyxAyAFx=Fy
12 simpl u=yv=xu=y
13 12 fveq2d u=yv=xFu=Fy
14 simpr u=yv=xv=x
15 14 fveq2d u=yv=xFv=Fx
16 13 15 eqeq12d u=yv=xFu=FvFy=Fx
17 16 10 brab2a yuv|uAvAFu=FvxyAxAFy=Fx
18 4 11 17 3bitr4i xuv|uAvAFu=Fvyyuv|uAvAFu=Fvx
19 18 biimpi xuv|uAvAFu=Fvyyuv|uAvAFu=Fvx
20 simplll xAyAFx=FyyAzAFy=FzxA
21 simprlr xAyAFx=FyyAzAFy=FzzA
22 simplr xAyAFx=FyyAzAFy=FzFx=Fy
23 simprr xAyAFx=FyyAzAFy=FzFy=Fz
24 22 23 eqtrd xAyAFx=FyyAzAFy=FzFx=Fz
25 20 21 24 jca31 xAyAFx=FyyAzAFy=FzxAzAFx=Fz
26 simpl u=yv=zu=y
27 26 fveq2d u=yv=zFu=Fy
28 simpr u=yv=zv=z
29 28 fveq2d u=yv=zFv=Fz
30 27 29 eqeq12d u=yv=zFu=FvFy=Fz
31 30 10 brab2a yuv|uAvAFu=FvzyAzAFy=Fz
32 11 31 anbi12i xuv|uAvAFu=Fvyyuv|uAvAFu=FvzxAyAFx=FyyAzAFy=Fz
33 simpl u=xv=zu=x
34 33 fveq2d u=xv=zFu=Fx
35 simpr u=xv=zv=z
36 35 fveq2d u=xv=zFv=Fz
37 34 36 eqeq12d u=xv=zFu=FvFx=Fz
38 37 10 brab2a xuv|uAvAFu=FvzxAzAFx=Fz
39 25 32 38 3imtr4i xuv|uAvAFu=Fvyyuv|uAvAFu=Fvzxuv|uAvAFu=Fvz
40 eqid Fx=Fx
41 40 biantru xAxAxAxAFx=Fx
42 pm4.24 xAxAxA
43 simpl u=xv=xu=x
44 43 fveq2d u=xv=xFu=Fx
45 simpr u=xv=xv=x
46 45 fveq2d u=xv=xFv=Fx
47 44 46 eqeq12d u=xv=xFu=FvFx=Fx
48 47 10 brab2a xuv|uAvAFu=FvxxAxAFx=Fx
49 41 42 48 3bitr4i xAxuv|uAvAFu=Fvx
50 1 19 39 49 iseri uv|uAvAFu=FvErA
51 11 baib xAyAxuv|uAvAFu=FvyFx=Fy
52 51 rgen2 xAyAxuv|uAvAFu=FvyFx=Fy
53 id AVAV
54 simprll AVuAvAFu=FvuA
55 simprlr AVuAvAFu=FvvA
56 53 53 54 55 opabex2 AVuv|uAvAFu=FvV
57 ereq1 r=uv|uAvAFu=FvrErAuv|uAvAFu=FvErA
58 simpl r=uv|uAvAFu=FvxAyAr=uv|uAvAFu=Fv
59 58 breqd r=uv|uAvAFu=FvxAyAxryxuv|uAvAFu=Fvy
60 59 bibi1d r=uv|uAvAFu=FvxAyAxryFx=Fyxuv|uAvAFu=FvyFx=Fy
61 60 2ralbidva r=uv|uAvAFu=FvxAyAxryFx=FyxAyAxuv|uAvAFu=FvyFx=Fy
62 57 61 anbi12d r=uv|uAvAFu=FvrErAxAyAxryFx=Fyuv|uAvAFu=FvErAxAyAxuv|uAvAFu=FvyFx=Fy
63 62 spcegv uv|uAvAFu=FvVuv|uAvAFu=FvErAxAyAxuv|uAvAFu=FvyFx=FyrrErAxAyAxryFx=Fy
64 56 63 syl AVuv|uAvAFu=FvErAxAyAxuv|uAvAFu=FvyFx=FyrrErAxAyAxryFx=Fy
65 50 52 64 mp2ani AVrrErAxAyAxryFx=Fy