Description: Given any function F , equality of the image by F is an equivalence relation. (Contributed by Thierry Arnoux, 25-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | tgjustf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv | |
|
2 | ancom | |
|
3 | eqcom | |
|
4 | 2 3 | anbi12i | |
5 | simpl | |
|
6 | 5 | fveq2d | |
7 | simpr | |
|
8 | 7 | fveq2d | |
9 | 6 8 | eqeq12d | |
10 | eqid | |
|
11 | 9 10 | brab2a | |
12 | simpl | |
|
13 | 12 | fveq2d | |
14 | simpr | |
|
15 | 14 | fveq2d | |
16 | 13 15 | eqeq12d | |
17 | 16 10 | brab2a | |
18 | 4 11 17 | 3bitr4i | |
19 | 18 | biimpi | |
20 | simplll | |
|
21 | simprlr | |
|
22 | simplr | |
|
23 | simprr | |
|
24 | 22 23 | eqtrd | |
25 | 20 21 24 | jca31 | |
26 | simpl | |
|
27 | 26 | fveq2d | |
28 | simpr | |
|
29 | 28 | fveq2d | |
30 | 27 29 | eqeq12d | |
31 | 30 10 | brab2a | |
32 | 11 31 | anbi12i | |
33 | simpl | |
|
34 | 33 | fveq2d | |
35 | simpr | |
|
36 | 35 | fveq2d | |
37 | 34 36 | eqeq12d | |
38 | 37 10 | brab2a | |
39 | 25 32 38 | 3imtr4i | |
40 | eqid | |
|
41 | 40 | biantru | |
42 | pm4.24 | |
|
43 | simpl | |
|
44 | 43 | fveq2d | |
45 | simpr | |
|
46 | 45 | fveq2d | |
47 | 44 46 | eqeq12d | |
48 | 47 10 | brab2a | |
49 | 41 42 48 | 3bitr4i | |
50 | 1 19 39 49 | iseri | |
51 | 11 | baib | |
52 | 51 | rgen2 | |
53 | id | |
|
54 | simprll | |
|
55 | simprlr | |
|
56 | 53 53 54 55 | opabex2 | |
57 | ereq1 | |
|
58 | simpl | |
|
59 | 58 | breqd | |
60 | 59 | bibi1d | |
61 | 60 | 2ralbidva | |
62 | 57 61 | anbi12d | |
63 | 62 | spcegv | |
64 | 56 63 | syl | |
65 | 50 52 64 | mp2ani | |