Metamath Proof Explorer


Theorem tgoldbachgnn

Description: Lemma for tgoldbachgtd . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses tgoldbachgtda.o O=z|¬2z
tgoldbachgtda.n φNO
tgoldbachgtda.0 φ1027N
Assertion tgoldbachgnn φN

Proof

Step Hyp Ref Expression
1 tgoldbachgtda.o O=z|¬2z
2 tgoldbachgtda.n φNO
3 tgoldbachgtda.0 φ1027N
4 2 1 eleqtrdi φNz|¬2z
5 elrabi Nz|¬2zN
6 4 5 syl φN
7 1red φ1
8 10nn0 100
9 8 nn0rei 10
10 2nn0 20
11 7nn0 70
12 10 11 deccl 270
13 reexpcl 102701027
14 9 12 13 mp2an 1027
15 14 a1i φ1027
16 6 zred φN
17 1re 1
18 1lt10 1<10
19 17 9 18 ltleii 110
20 expge1 1027011011027
21 9 12 19 20 mp3an 11027
22 21 a1i φ11027
23 7 15 16 22 3 letrd φ1N
24 elnnz1 NN1N
25 6 23 24 sylanbrc φN