Metamath Proof Explorer


Theorem tocycval

Description: Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023)

Ref Expression
Hypothesis tocycval.1 C=toCycD
Assertion tocycval DVC=wuWordD|u:domu1-1DIDranwwcyclShift1w-1

Proof

Step Hyp Ref Expression
1 tocycval.1 C=toCycD
2 df-tocyc toCyc=dVwuWordd|u:domu1-1dIdranwwcyclShift1w-1
3 wrdeq d=DWordd=WordD
4 f1eq3 d=Du:domu1-1du:domu1-1D
5 3 4 rabeqbidv d=DuWordd|u:domu1-1d=uWordD|u:domu1-1D
6 difeq1 d=Ddranw=Dranw
7 6 reseq2d d=DIdranw=IDranw
8 7 uneq1d d=DIdranwwcyclShift1w-1=IDranwwcyclShift1w-1
9 5 8 mpteq12dv d=DwuWordd|u:domu1-1dIdranwwcyclShift1w-1=wuWordD|u:domu1-1DIDranwwcyclShift1w-1
10 elex DVDV
11 eqid uWordD|u:domu1-1D=uWordD|u:domu1-1D
12 wrdexg DVWordDV
13 11 12 rabexd DVuWordD|u:domu1-1DV
14 13 mptexd DVwuWordD|u:domu1-1DIDranwwcyclShift1w-1V
15 2 9 10 14 fvmptd3 DVtoCycD=wuWordD|u:domu1-1DIDranwwcyclShift1w-1
16 1 15 eqtrid DVC=wuWordD|u:domu1-1DIDranwwcyclShift1w-1