Metamath Proof Explorer


Theorem tocycval

Description: Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023)

Ref Expression
Hypothesis tocycval.1 C = toCyc D
Assertion tocycval D V C = w u Word D | u : dom u 1-1 D I D ran w w cyclShift 1 w -1

Proof

Step Hyp Ref Expression
1 tocycval.1 C = toCyc D
2 df-tocyc toCyc = d V w u Word d | u : dom u 1-1 d I d ran w w cyclShift 1 w -1
3 wrdeq d = D Word d = Word D
4 f1eq3 d = D u : dom u 1-1 d u : dom u 1-1 D
5 3 4 rabeqbidv d = D u Word d | u : dom u 1-1 d = u Word D | u : dom u 1-1 D
6 difeq1 d = D d ran w = D ran w
7 6 reseq2d d = D I d ran w = I D ran w
8 7 uneq1d d = D I d ran w w cyclShift 1 w -1 = I D ran w w cyclShift 1 w -1
9 5 8 mpteq12dv d = D w u Word d | u : dom u 1-1 d I d ran w w cyclShift 1 w -1 = w u Word D | u : dom u 1-1 D I D ran w w cyclShift 1 w -1
10 elex D V D V
11 eqid u Word D | u : dom u 1-1 D = u Word D | u : dom u 1-1 D
12 wrdexg D V Word D V
13 11 12 rabexd D V u Word D | u : dom u 1-1 D V
14 13 mptexd D V w u Word D | u : dom u 1-1 D I D ran w w cyclShift 1 w -1 V
15 2 9 10 14 fvmptd3 D V toCyc D = w u Word D | u : dom u 1-1 D I D ran w w cyclShift 1 w -1
16 1 15 eqtrid D V C = w u Word D | u : dom u 1-1 D I D ran w w cyclShift 1 w -1