Metamath Proof Explorer


Theorem topbnd

Description: Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009)

Ref Expression
Hypothesis topbnd.1 X = J
Assertion topbnd J Top A X cls J A cls J X A = cls J A int J A

Proof

Step Hyp Ref Expression
1 topbnd.1 X = J
2 1 clsdif J Top A X cls J X A = X int J A
3 2 ineq2d J Top A X cls J A cls J X A = cls J A X int J A
4 indif2 cls J A X int J A = cls J A X int J A
5 3 4 eqtrdi J Top A X cls J A cls J X A = cls J A X int J A
6 1 clsss3 J Top A X cls J A X
7 df-ss cls J A X cls J A X = cls J A
8 6 7 sylib J Top A X cls J A X = cls J A
9 8 difeq1d J Top A X cls J A X int J A = cls J A int J A
10 5 9 eqtrd J Top A X cls J A cls J X A = cls J A int J A