Metamath Proof Explorer


Theorem topbnd

Description: Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009)

Ref Expression
Hypothesis topbnd.1 X=J
Assertion topbnd JTopAXclsJAclsJXA=clsJAintJA

Proof

Step Hyp Ref Expression
1 topbnd.1 X=J
2 1 clsdif JTopAXclsJXA=XintJA
3 2 ineq2d JTopAXclsJAclsJXA=clsJAXintJA
4 indif2 clsJAXintJA=clsJAXintJA
5 3 4 eqtrdi JTopAXclsJAclsJXA=clsJAXintJA
6 1 clsss3 JTopAXclsJAX
7 df-ss clsJAXclsJAX=clsJA
8 6 7 sylib JTopAXclsJAX=clsJA
9 8 difeq1d JTopAXclsJAXintJA=clsJAintJA
10 5 9 eqtrd JTopAXclsJAclsJXA=clsJAintJA