Metamath Proof Explorer


Theorem trclublem

Description: If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020)

Ref Expression
Assertion trclublem RVRdomR×ranRx|Rxxxx

Proof

Step Hyp Ref Expression
1 trclexlem RVRdomR×ranRV
2 ssun1 RRdomR×ranR
3 relcnv RelR-1
4 relssdmrn RelR-1R-1domR-1×ranR-1
5 3 4 ax-mp R-1domR-1×ranR-1
6 ssequn1 R-1domR-1×ranR-1R-1domR-1×ranR-1=domR-1×ranR-1
7 5 6 mpbi R-1domR-1×ranR-1=domR-1×ranR-1
8 cnvun RdomR×ranR-1=R-1domR×ranR-1
9 cnvxp domR×ranR-1=ranR×domR
10 df-rn ranR=domR-1
11 dfdm4 domR=ranR-1
12 10 11 xpeq12i ranR×domR=domR-1×ranR-1
13 9 12 eqtri domR×ranR-1=domR-1×ranR-1
14 13 uneq2i R-1domR×ranR-1=R-1domR-1×ranR-1
15 8 14 eqtri RdomR×ranR-1=R-1domR-1×ranR-1
16 7 15 13 3eqtr4i RdomR×ranR-1=domR×ranR-1
17 16 breqi bRdomR×ranR-1abdomR×ranR-1a
18 vex bV
19 vex aV
20 18 19 brcnv bRdomR×ranR-1aaRdomR×ranRb
21 18 19 brcnv bdomR×ranR-1aadomR×ranRb
22 17 20 21 3bitr3i aRdomR×ranRbadomR×ranRb
23 16 breqi cRdomR×ranR-1bcdomR×ranR-1b
24 vex cV
25 24 18 brcnv cRdomR×ranR-1bbRdomR×ranRc
26 24 18 brcnv cdomR×ranR-1bbdomR×ranRc
27 23 25 26 3bitr3i bRdomR×ranRcbdomR×ranRc
28 22 27 anbi12i aRdomR×ranRbbRdomR×ranRcadomR×ranRbbdomR×ranRc
29 28 biimpi aRdomR×ranRbbRdomR×ranRcadomR×ranRbbdomR×ranRc
30 29 eximi baRdomR×ranRbbRdomR×ranRcbadomR×ranRbbdomR×ranRc
31 30 ssopab2i ac|baRdomR×ranRbbRdomR×ranRcac|badomR×ranRbbdomR×ranRc
32 df-co RdomR×ranRRdomR×ranR=ac|baRdomR×ranRbbRdomR×ranRc
33 df-co domR×ranRdomR×ranR=ac|badomR×ranRbbdomR×ranRc
34 31 32 33 3sstr4i RdomR×ranRRdomR×ranRdomR×ranRdomR×ranR
35 xptrrel domR×ranRdomR×ranRdomR×ranR
36 ssun2 domR×ranRRdomR×ranR
37 35 36 sstri domR×ranRdomR×ranRRdomR×ranR
38 34 37 sstri RdomR×ranRRdomR×ranRRdomR×ranR
39 trcleq2lem x=RdomR×ranRRxxxxRRdomR×ranRRdomR×ranRRdomR×ranRRdomR×ranR
40 39 elabg RdomR×ranRVRdomR×ranRx|RxxxxRRdomR×ranRRdomR×ranRRdomR×ranRRdomR×ranR
41 40 biimprd RdomR×ranRVRRdomR×ranRRdomR×ranRRdomR×ranRRdomR×ranRRdomR×ranRx|Rxxxx
42 2 38 41 mp2ani RdomR×ranRVRdomR×ranRx|Rxxxx
43 1 42 syl RVRdomR×ranRx|Rxxxx