Description: If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trclublem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclexlem | |
|
2 | ssun1 | |
|
3 | relcnv | |
|
4 | relssdmrn | |
|
5 | 3 4 | ax-mp | |
6 | ssequn1 | |
|
7 | 5 6 | mpbi | |
8 | cnvun | |
|
9 | cnvxp | |
|
10 | df-rn | |
|
11 | dfdm4 | |
|
12 | 10 11 | xpeq12i | |
13 | 9 12 | eqtri | |
14 | 13 | uneq2i | |
15 | 8 14 | eqtri | |
16 | 7 15 13 | 3eqtr4i | |
17 | 16 | breqi | |
18 | vex | |
|
19 | vex | |
|
20 | 18 19 | brcnv | |
21 | 18 19 | brcnv | |
22 | 17 20 21 | 3bitr3i | |
23 | 16 | breqi | |
24 | vex | |
|
25 | 24 18 | brcnv | |
26 | 24 18 | brcnv | |
27 | 23 25 26 | 3bitr3i | |
28 | 22 27 | anbi12i | |
29 | 28 | biimpi | |
30 | 29 | eximi | |
31 | 30 | ssopab2i | |
32 | df-co | |
|
33 | df-co | |
|
34 | 31 32 33 | 3sstr4i | |
35 | xptrrel | |
|
36 | ssun2 | |
|
37 | 35 36 | sstri | |
38 | 34 37 | sstri | |
39 | trcleq2lem | |
|
40 | 39 | elabg | |
41 | 40 | biimprd | |
42 | 2 38 41 | mp2ani | |
43 | 1 42 | syl | |