Metamath Proof Explorer


Theorem trl0

Description: If an atom not under the fiducial co-atom W equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses trl0.l ˙=K
trl0.z 0˙=0.K
trl0.a A=AtomsK
trl0.h H=LHypK
trl0.t T=LTrnKW
trl0.r R=trLKW
Assertion trl0 KHLWHPA¬P˙WFTFP=PRF=0˙

Proof

Step Hyp Ref Expression
1 trl0.l ˙=K
2 trl0.z 0˙=0.K
3 trl0.a A=AtomsK
4 trl0.h H=LHypK
5 trl0.t T=LTrnKW
6 trl0.r R=trLKW
7 simp1 KHLWHPA¬P˙WFTFP=PKHLWH
8 simp3l KHLWHPA¬P˙WFTFP=PFT
9 simp2 KHLWHPA¬P˙WFTFP=PPA¬P˙W
10 eqid joinK=joinK
11 eqid meetK=meetK
12 1 10 11 3 4 5 6 trlval2 KHLWHFTPA¬P˙WRF=PjoinKFPmeetKW
13 7 8 9 12 syl3anc KHLWHPA¬P˙WFTFP=PRF=PjoinKFPmeetKW
14 simp3r KHLWHPA¬P˙WFTFP=PFP=P
15 14 oveq2d KHLWHPA¬P˙WFTFP=PPjoinKFP=PjoinKP
16 simp1l KHLWHPA¬P˙WFTFP=PKHL
17 simp2l KHLWHPA¬P˙WFTFP=PPA
18 10 3 hlatjidm KHLPAPjoinKP=P
19 16 17 18 syl2anc KHLWHPA¬P˙WFTFP=PPjoinKP=P
20 15 19 eqtrd KHLWHPA¬P˙WFTFP=PPjoinKFP=P
21 20 oveq1d KHLWHPA¬P˙WFTFP=PPjoinKFPmeetKW=PmeetKW
22 1 11 2 3 4 lhpmat KHLWHPA¬P˙WPmeetKW=0˙
23 7 9 22 syl2anc KHLWHPA¬P˙WFTFP=PPmeetKW=0˙
24 13 21 23 3eqtrd KHLWHPA¬P˙WFTFP=PRF=0˙