Metamath Proof Explorer


Theorem trlcoabs

Description: Absorption into a composition by joining with trace. (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses trlcoabs.l ˙=K
trlcoabs.j ˙=joinK
trlcoabs.a A=AtomsK
trlcoabs.h H=LHypK
trlcoabs.t T=LTrnKW
trlcoabs.r R=trLKW
Assertion trlcoabs KHLWHFTGTPA¬P˙WFGP˙RF=GP˙RF

Proof

Step Hyp Ref Expression
1 trlcoabs.l ˙=K
2 trlcoabs.j ˙=joinK
3 trlcoabs.a A=AtomsK
4 trlcoabs.h H=LHypK
5 trlcoabs.t T=LTrnKW
6 trlcoabs.r R=trLKW
7 1 3 4 5 ltrncoval KHLWHFTGTPAFGP=FGP
8 7 3adant3r KHLWHFTGTPA¬P˙WFGP=FGP
9 8 oveq1d KHLWHFTGTPA¬P˙WFGP˙RF=FGP˙RF
10 simp1 KHLWHFTGTPA¬P˙WKHLWH
11 simp2l KHLWHFTGTPA¬P˙WFT
12 1 3 4 5 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
13 12 3adant2l KHLWHFTGTPA¬P˙WGPA¬GP˙W
14 1 2 3 4 5 6 trljat3 KHLWHFTGPA¬GP˙WGP˙RF=FGP˙RF
15 10 11 13 14 syl3anc KHLWHFTGTPA¬P˙WGP˙RF=FGP˙RF
16 9 15 eqtr4d KHLWHFTGTPA¬P˙WFGP˙RF=GP˙RF