Metamath Proof Explorer


Theorem trlnle

Description: The atom not under the fiducial co-atom W is not less than the trace of a lattice translation. Part of proof of Lemma C in Crawley p. 112. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses trlne.l ˙=K
trlne.a A=AtomsK
trlne.h H=LHypK
trlne.t T=LTrnKW
trlne.r R=trLKW
Assertion trlnle KHLWHFTPA¬P˙W¬P˙RF

Proof

Step Hyp Ref Expression
1 trlne.l ˙=K
2 trlne.a A=AtomsK
3 trlne.h H=LHypK
4 trlne.t T=LTrnKW
5 trlne.r R=trLKW
6 simpl1l KHLWHFTPA¬P˙WFP=PKHL
7 hlatl KHLKAtLat
8 6 7 syl KHLWHFTPA¬P˙WFP=PKAtLat
9 simpl3l KHLWHFTPA¬P˙WFP=PPA
10 eqid 0.K=0.K
11 1 10 2 atnle0 KAtLatPA¬P˙0.K
12 8 9 11 syl2anc KHLWHFTPA¬P˙WFP=P¬P˙0.K
13 simpl1 KHLWHFTPA¬P˙WFP=PKHLWH
14 simpl3 KHLWHFTPA¬P˙WFP=PPA¬P˙W
15 simpl2 KHLWHFTPA¬P˙WFP=PFT
16 simpr KHLWHFTPA¬P˙WFP=PFP=P
17 1 10 2 3 4 5 trl0 KHLWHPA¬P˙WFTFP=PRF=0.K
18 13 14 15 16 17 syl112anc KHLWHFTPA¬P˙WFP=PRF=0.K
19 18 breq2d KHLWHFTPA¬P˙WFP=PP˙RFP˙0.K
20 12 19 mtbird KHLWHFTPA¬P˙WFP=P¬P˙RF
21 1 2 3 4 5 trlne KHLWHFTPA¬P˙WPRF
22 21 adantr KHLWHFTPA¬P˙WFPPPRF
23 simpl1l KHLWHFTPA¬P˙WFPPKHL
24 23 7 syl KHLWHFTPA¬P˙WFPPKAtLat
25 simpl3l KHLWHFTPA¬P˙WFPPPA
26 simpl1 KHLWHFTPA¬P˙WFPPKHLWH
27 simpl3 KHLWHFTPA¬P˙WFPPPA¬P˙W
28 simpl2 KHLWHFTPA¬P˙WFPPFT
29 simpr KHLWHFTPA¬P˙WFPPFPP
30 1 2 3 4 5 trlat KHLWHPA¬P˙WFTFPPRFA
31 26 27 28 29 30 syl112anc KHLWHFTPA¬P˙WFPPRFA
32 1 2 atncmp KAtLatPARFA¬P˙RFPRF
33 24 25 31 32 syl3anc KHLWHFTPA¬P˙WFPP¬P˙RFPRF
34 22 33 mpbird KHLWHFTPA¬P˙WFPP¬P˙RF
35 20 34 pm2.61dane KHLWHFTPA¬P˙W¬P˙RF